Skip to main content
Log in

Exogenous fibrin matrix precursors stimulate the temporal progress of nerve regeneration within a silicone chamber

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The silicone chamber model permits the investigation of the cellular and molecular events underlying successful regeneration of the rat sciatic nerve across a 10 mm gap. When 25 μl chambers are implanted prefilled with phosphate-buffered saline (PBS), it takes 5–7 days before sufficient fibrin matrix (derived from plasma precursors) accumulates naturally to form a complete bridge across the chamber gap; at 1 week postimplantation, cellular migration into the matrix from the nerve stumps is just beginning. The temporal progress of regeneration might be stimulated if a fibrin matrix, conductive to cell migration, was provided to the nerve stumps at or shortly after the time of chamber implantation. To test this hypothesis, chambers were prefilled, at the time of implantation, with different preparations of homologous plasma. A solution of 90% platelet-free plasma dialyzed against PBS (DP) formed a fibrin matrix by 24 hours postimplantation that, like the naturally formed matrix, had a predominantly longitudinal orientation. The temporal progress of regeneration was stimulated in the DP-prefilled chambers; at 17 days postimplantation, the extents of Schwann cell migration and axonal elongation were significantly greater than in the control system. In contrast, prefilling chambers with either non-citrated plasma or DP + calcium resulted in the generation of a matrix within 8 minutes that was composed of randomly oriented fibrin polymers. These matrices significantly retarded the progress of regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez-Buylla, A., and Valinsky, J. E. 1985. Production of plasminogen activator in cultures of superior cervical ganglia and isolated Schwann cells. Proc. Nat Acad. Sci. (USA) 82:3519–3523.

    Google Scholar 

  2. Baron-Van Evercooren, A., Kleinman, H. K., Seppa, H. E. J., Rentier, B., and Dubois-Dalcq, M. 1982. Fibronectin promotes rat Schwann cell growth and motility. J. Cell Biol. 93:211–216.

    Google Scholar 

  3. Blomback, B., and Okada, M. 1982. Fibrin Gel Structure and clotting time. Thrombosis Res. 25:51–70.

    Google Scholar 

  4. Carr Jr., M. E., Shen, L. L., and Hermans, J. 1977. Masslength ratio of fibrin fibers from gel permeation and light scattering. Biopolymers 16:1–15.

    Google Scholar 

  5. Clauss, A. 1957. Gerinnungs physiologische schnell Methods zur bestimmung des Fibrinogens. Acta Haematol. 17:237–246.

    Google Scholar 

  6. Dejana, E., Lunguino, L. R., Polentarutti, N., Balconi, G., Ryckewaert, J. J., Larrieu, M. J., Donati, M. B., Montouani, A., and Marguerie, G. 1985. Interaction between fibrinogen and cultured endothelial cells. J. Clin. Invest. 75:11–18.

    Google Scholar 

  7. Doolittle, R. F. 1981. Fibrinogen and Fibrin. Pages 163–191,in Bloom, A. L., and Thomas, D. P. (eds.), Haemostasis and Thrombosis, Churchill-Livingstone, London, England.

    Google Scholar 

  8. Dunn, F. W., Deguchi, K., Goria, J., Soria, C., Lijnen, H. R., Tobelem, G., and Caen, J. 1984. Importance of the interaction between plasminogen and fibrin for plasminogen activation by tissue-type plasminogen activator. Thromb. Res. 36:345–351.

    Google Scholar 

  9. Ferry, J. D., and Morrison, P. R. 1947. Preparation and properties of serum and plasma proteins. VII. The conversion of human fibrinogen to fibrin under various conditions. J. Am. Chem. Soc. 69:388–400.

    Google Scholar 

  10. Gaffney, P. J., and Whitaker, A. N. 1979. Fibrin crosslinks and lysis rates. Thromb. Res. 14:85–94.

    Google Scholar 

  11. Gormensen, J., Fletcher, A. P., Alkjaersig, N., and Sherry, S. 1967. Enzymatic lysis of plasma clots: the influence of fibrin stabilization on lysis rates. Arch. Biochem. Biophys. 120:654–665.

    Google Scholar 

  12. Grinnel, F., Feld, M., and Minter, D. 1980. Fibroblast adhesion to fibrinogen and fibrin substrata: Requirement for coldinsoluble globulin. Cell 19:517–525.

    Google Scholar 

  13. Guenther, J., Nick, H., and Monard, D. 1985. A glia-derived neurite promoting factor with protease inhibitory activity. EMBO J. 4:1963–1966.

    Google Scholar 

  14. Hantgan, R. R., and Hermans, J. 1979. Assembly of fibrin. J. Biol. Chem. 254:11272–11281.

    Google Scholar 

  15. Hantgan, R., Fowler, W., Erckson, H., and Hermans, J. 1980. Fibrin assembly: A comparison of electron microscopic and light scattering results. Thromb. Haemostasis. 44:119–124.

    Google Scholar 

  16. Jurecka, W., Ammerer, H. P., and Lassmann, H. 1975. Regeneration of a transected peripheral nerve: An autoradiographic and electronmicroscopic study. Acta Neuropath. (Berl.) 32:299–312.

    Google Scholar 

  17. Kalderon, N. 1984. Schwann cell proliferation and localized proteolysis: Expression of plasminogen-activator activity predominates in the proliferating cell populations. Proc. Nat. Acad Sci. 81:7216–7220.

    Google Scholar 

  18. Kamykowski, G. W., Mosher, D. F., Lorand, L., and Ferry, J. D. 1981. Modification of shear modulus and creep compliance of fibrin clots by fibronectin. Biophys. Chem. 13:25–28.

    Google Scholar 

  19. Krystosek, A., and Seeds, N. W. 1984. Peripheral neurons and Schwann cells secrete plasminogen activator. J. Cell Biol. 98:773–776.

    Google Scholar 

  20. Longo, F. M., Skaper, S. D., Manthorpe, M., Williams, L. R., Lundborg, G., and Varon, S. 1983. Temporal changes of neuronotrophic activities accumulating in vivo within nerve regeneration chambers. Exp. Neurol. 81:756–769.

    Google Scholar 

  21. Longo, G. M., Hayman, E. G., Davis, G. E., Ruoslahti, E., Engvall, E., Manthorpe, M., and Varon, S. 1984. Neurite promoting factors and extracellular matrix components accumulating in vivo within nerve regeneration chambers. Brain Res. 309:105–117.

    Google Scholar 

  22. Lorand, L. 1976. Introduction to clotting and lysis in blood plasma. Meth. Enzymol. 45:31–37.

    Google Scholar 

  23. Lundborg, G., Dahlin, L. B., Danielsen, N., Gelberman, R. H., Longo, F. M., Powell, H. C., and Varon, S. 1982. Nerve regeneration in silicome chambers: Influence of gap length and of distal stump components. Exp. Neurol. 76:361–375.

    Google Scholar 

  24. Madison, R., Da Silva, C. F., and Dikkes, P. 1985. Modification of the microenvironment allows axonal regeneration across a 20 mm nerve gap using entubulation repair. Soc. Neurosci. Abst. 11:1253.

    Google Scholar 

  25. Moonen, G., Grau-Wagemans, M. A., and Selak, I. 1982. Plasminogen activator-plasmin system and neuronal migration. Nature, 298:753–755.

    Google Scholar 

  26. Mosesson, M. W., and Doolittle, R. F. (eds.). 1983.In Molecular Biology of Fibrinogen and Fibrin, Ann. N.Y. Acad. Sci., Vol. 408.

  27. Mosher, D. F. 1980. Fibronectin. Prog. Hemostasis Thromb. 5:111–151.

    Google Scholar 

  28. Mosher, D. F. 1975. Cross-linking or cold-insoluble globulin by fibrin-stabilizing factor. J. Biol. Chem. 250:6614–6621.

    Google Scholar 

  29. Nemerson, Y., and Esnout, M. P. 1973. Activation of a proteolytic system by a membrane lipoprotein: Mechanism of action of tissue factor. Proc. Nat. Acad. Sci. 70:310–314.

    Google Scholar 

  30. Pittman, R. N. 1985. Release of plasminogen activator and a calcium-dependent metalloprotease from cultured sympathetic and sensory neurons. Dev. Biol. 110:91–101.

    Google Scholar 

  31. Reich, E., Rifkin, D. B., and Shaw, E. (eds.) 1975.In Proteases and Biological Control. Cold Spring Harbor Conferences on Cell Proliferation, Vol. 2.

  32. Ruoslahti, E., Hayman, E. G., Pierschbacher, M., and Engvall, E. 1982. Fibronectin: Purification, immunological properties, and biological activities. Methods in Enzymol. 82:803–831.

    Google Scholar 

  33. Sakata, Y., and Aoki, N. 1982. Significance of cross-linking of α2-plasmin inhibitor to fibrin in inhibition of fibrinolysis and in hemostasis. J. Clin. Invest. 69:536–545.

    Google Scholar 

  34. Salonen, E.-M., Zitting, A., and Vaheri, A. 1984. Laminin interacts with plasminogen and its tissue-type activator. FEBS Lett. 172:29–32.

    Google Scholar 

  35. Schleef, R. R., and Birdwelll, C. R. 1982. The effect of fibrin on endothelial cell migration in vitro. Tiss. Cell Culture. 14:629–636.

    Google Scholar 

  36. Shah, G. A., Nair, C. H., and Dhall, D. P. 1985. Physiological studies on fibrin network structure. Thromb. Res. 40:181–188.

    Google Scholar 

  37. Shen, L. L., Hermans, J., McDonagh, J., McDonagh, R. P., and Carr, M. 1975. Effects of calcium ion and covalent crosslinking on formation and elasticity of fibrin gels. Thrombosis Res. 6:255–265.

    Google Scholar 

  38. Steiner, R. F., and Laki, K. 1951. Light Scattering studies on the clotting of fibrinogen. Arch. Biochem. Biophys. 34:24–37.

    Google Scholar 

  39. Tamaki, T., and Aoki, N. 1982. Cross-linking of β2 inhibitor to fibrin catalyzed by activated fibrin stabilizing factor. J. Biol. Chem. 257:14767–14772.

    Google Scholar 

  40. Weiss, P. 1944. The technology of nerve regeneration: A review. Sutureless tubulation and related methods of nerve repair. J. Neurol. 1:400–450.

    Google Scholar 

  41. Westlund, L. E., and Andersson, L. O. 1985. Studies on the influence of reactants and buffer environment on clot lysis induced by human plasminogen activators. Thromb. Res. 37:213–223.

    Google Scholar 

  42. Wilf, J., Gladner, J. A., and Minton, A. P. 1985. Acceleration of fibrin gel formation by unrelated proteins. Thromb. Res. 37:681–688.

    Google Scholar 

  43. Williams, L. R., Longo, F. M., Powell, H. C., Lundborg, G., and Varon, S. 1983. Spatial-temporal progress of peripheral nerve regeneration within a silicone chamber: Parameters for a bioassay. J. Comp. Neurol. 218:460–470.

    Google Scholar 

  44. Williams, L. R., Powell, H. C., Lundborg, G., and Varon, S. 1984. Competence of nerve tissue as distal insert promoting nerve regeneration in a silicone chamber. Brain Res. 293:201–211.

    Google Scholar 

  45. Williams, L. R., and Varon, S. 1985. Modification of fibrin matrix formationin situ enhances nerve regeneration in silicone chambers. J. Comp. Neurol. 231:209–220.

    Google Scholar 

  46. Williams, L. R., and Varon, S. 1986. Experimental manipulations of the microenvironment within a nerve regeneration chamber. In press,in Ruben, R. J., Van De Water, T. R., and Rubel, E. (eds.), Biology of Change in Otolaryngology: Developmental Biology, Plasticity and Compensation and Injury and Repair Mechanisms, Excerpta Medica International Congress Series, Elsevier Pub.

  47. Yamada, K. M., and Kennedy, D. W. 1984. Dualistic nature of adhesive protein function: Fibronectin and its biologically active peptide fragments can autoinhibit fibronectin function. J. Cell Biol. 99:29–36.

    Google Scholar 

  48. Yannas, I. V., Orgill, D. P., Silver, J., Norregaard, T. V., Zervas, N. T., and Schoene, W. C. 1985. Polymeric template facilitates regeneration of sciatic nerves across 15-mm gap. Am. Chem. Soc. Abst. 190:PMSE44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special Issue dedicated to Dr. E. M. Shooter and Dr. S. Varon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, L.R. Exogenous fibrin matrix precursors stimulate the temporal progress of nerve regeneration within a silicone chamber. Neurochem Res 12, 851–860 (1987). https://doi.org/10.1007/BF00966306

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966306

Key Words

Navigation