Skip to main content
Log in

Should calcium antagonists be used after myocardial infarction? Ischemia selectivity versus vascular selectivity

  • State-of-the-Art Lectures
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

The use of calcium antagonists for postinfarct cardioprotection remains controversial. Several major trials have failed to show benefit, despite positive expectations based on promising experimental data. A clue to the problem with the calcium antagonists was provided by the diltiazem trial, in which an adverse effect in the presence of congestive heart failure masked a benefit in those without heart failure. Accordingly, the most recent trial, DAVIT-II, was carried out in patients in whom preexisting left ventricular failure had been excluded. One of the interesting byproducts of that study was the possibility that verapamil prevented postinfarct sudden death, which implies a potential antiarrhythmic mechanism. It is proposed that cytosolic calicum overload could play a role in ischemic ventricular fibrillation. Experimentally, calcium antagonists are most effective antifibrillatory agents when catecholamine stimulation is combined with acute ischemia, as would be the situation in the acute phase of myocardial infarction. This potential benefit of calcium antagonists may be offset in the presence of congestive heart failure because left ventricular dilation is directly arrhythmogenic. The ideal calcium antagonist, aimed at preventing postinfarct ischemic arrhythmias, but without a significant negative inotropic effect, could be based on 1 of 2 principles. First, the agent could be highly selective for the ischemic but not the nonischemic zone of the myocardium (ischemic-selective agent). Second, the agent could be highly vascular selective, so that left ventricular dilation would be avoided. A comparative study of these two types of calcium antagonists should be undertaken in postinfarct patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Beta-Blocker Pooling Project Research Group. The beta-blocked pooling project (BBPP): Sub-group findings from randomized trials in post-infarction patients. Eur Heart J 1988;9:8–16.

    Google Scholar 

  2. Rehnqvist N. Prevention of sudden death by beta-blockade. Cardiovasc Drugs Ther 1990;4:465–469.

    Article  Google Scholar 

  3. Held PH, Yusuf S, Furberg CD. Calcium channel blockers in acute myocardial infarction and unstable angina: An overview. Br Med J 1989;299:1187–1192.

    Article  CAS  Google Scholar 

  4. Multicenter Diltiazem Postinfarction Trial Research Group. The effect of diltiazem on mortality and reinfarction after myocardial infarction. N Engl J Med 1988;319:385–392.

    Article  Google Scholar 

  5. Israeli Sprint Study Group. Secondary prevention reinfarction Israeli nifedipine trial (SPRINT). A randomized intervention trial of nifedipine in patients with acute myocardial infarction. Eur Heart J 1988;9:354–365.

    Google Scholar 

  6. Danish Study Group on Verapamil in Myocardial Infarction. Verapamil in acute myocardial infarction. Eur Heart J 1984;5:516–528.

    Google Scholar 

  7. Danish Study Group on Verapamil in Myocardial Infarction. Verapamil in acute myocardial infarction. Br J Clin Pharmacol 1986;21:197S-204S.

    Google Scholar 

  8. Danish Study Group on Verapamil in Myocardial Infarction. Effects of verapamil on mortality and major events after acute myocardial infarction (The Danish Verapamil Infarction Trial II—DAVIT II). Am J Cardiol 1990;66: 779–785.

    Article  Google Scholar 

  9. Goldstein RE, Boccuzzi SJ, Cruess D, Nattel S, the Adverse Experience Committee and the Multicenter Diltiazem Postinfarction Research Group. Diltiazem increases late-onset congestive heart failure in post-infarction patients with early reduction in ejection fraction. Circulation 1991;83: 52–60.

    PubMed  CAS  Google Scholar 

  10. Verma SP, Silke B, Taylor SH, et al. Nifedipine following acute myocardial infarction—dependence of response on baseline haemodynamic status. J Cardiovasc Pharmacol 1987;9:478–485.

    Article  PubMed  CAS  Google Scholar 

  11. Gordon GD, Mabin RA, Isaacs S, et al. Hemodynamic effects of sublingual nifedipine in acute myocardial infarction. Am J Cardiol 1984;53:1228–1232.

    Article  PubMed  CAS  Google Scholar 

  12. Kaufmann AJ, Aramendia P. Prevention of ventricular fibrillation induced by coronary ligation. J Pharmacol Exp Ther 1968;164:326–332.

    Google Scholar 

  13. Podzuweit T, Lubbe WF, Opie LH. Cyclic adenosine monophosphate, ventricular fibrillation and antiarrhythmic drugs. Lancet 1976;1:341–342.

    Article  PubMed  CAS  Google Scholar 

  14. Podzuweit T, Dalby AJ, Cherry GW, Opie LH. Cyclic AMP levels in ischaemic and non-ischaemic myocardium following coronary artery ligation: Relation to ventricular fibrillation. J Mol Cell Cardiol 1978;10:81–94.

    Article  PubMed  CAS  Google Scholar 

  15. Opie LH, Nathan D, Lubbe WF. Biochemical aspects of arrhythmogenesis and ventricular fibrillation. Am J Cardiol 1979;43:131–148.

    Article  PubMed  CAS  Google Scholar 

  16. Thandroyen FT. Protective action of calcium channel antagonist agents against ventricular fibrillation in isolated perfused rat heart. J Mol Cell Cardiol 1982;14:21–32.

    Article  PubMed  CAS  Google Scholar 

  17. Bricknell OL, Opie LH. Effects of substrates on tissue metabolic changes in the isolated rat heart during underperfusion and on release of lactate dehydrogenase and arrhythmias during reperfusion. Circ Res 1978;43:102–115.

    PubMed  CAS  Google Scholar 

  18. Thandroyen FT, Higginson LM, Opie LH, Yon E. The influence of verapamil and its isomers on vulnerability to ventricular fibrillation during acute myocardial ischemia and adrenergic stimulation in isolated rat heart. J Mol Cell Cardiol 1986;18:645–649.

    Article  PubMed  CAS  Google Scholar 

  19. Schneider JA, Sperelakis N. Slow Ca2+ and Na+ responses induced by isoproterenol and methylxanthines in isolated perfused guinea-pig hearts exposed to elevated K+. J Mol Cell Cardiol 1975;7:249–273.

    Article  PubMed  CAS  Google Scholar 

  20. Steenbergen C, Murphy E, Watts JA, London RE. Correlation between cytosolic free calcium, contracture, ATP, and irreversible ischemic injury in perfused rat heart. Circ Res 1990;66:135–146.

    PubMed  CAS  Google Scholar 

  21. Fujimoto T, Peter T, Hamamoto H, Mandel WJ. Effects of diltiazem on conduction of premature impulses during acute myocardial ischemia and reperfusion. Am J Cardiol 1981;48:851–857.

    Article  PubMed  CAS  Google Scholar 

  22. Clusin WT, Buchbinder M, Harrison DC. Calcium overload, “injury” current, and early ischaemic cardiac arrhythmias—a direct connection. Lancet 1983;1:272–274.

    Article  PubMed  CAS  Google Scholar 

  23. Blake K, Clusin WT, Franz MR, Smith NA. Mechanism of depolarization in the ischaemic dog heart: Discrepancy between T-Q potentials and potassium accumulation. J Physiol. 1988;397:307–330.

    PubMed  CAS  Google Scholar 

  24. Blake K, Clusin WT. Reduction of ischemic depolarization and extracellular K+ accumulation by diltiazem. Eur J Pharmacol 1986;127:261–265.

    Article  PubMed  CAS  Google Scholar 

  25. Lee H-C, Mohabir R, Smith N, et al. Effect of ischemia on calcium-dependent fluorescence transients in rabbit hearts containing Indo 1. Correlation and monophasic action potentials and contraction. Circulation 1988;78:1047–1059.

    PubMed  CAS  Google Scholar 

  26. Coetzee WA, Opie LH, Saman S. Proposed role of energy supply in the genesis of delayed afterdepolarizations—implications for ischemic or reperfusion arrhythmias. J Mol Cell Cardiol 1987;19(Suppl V):13–21.

    Article  PubMed  CAS  Google Scholar 

  27. Opie LH, Coetzee WA. Role of calcium ions in reperfusion arrhythmias. Relevance to pharmacological intervention. Cardiovasc Drugs Ther 1988;2:623–636.

    Article  PubMed  CAS  Google Scholar 

  28. Opie LH, Coetzee WA. Metabolic components of ischemia and fibrillation. In: Zipes DP, Jalife J, eds. Cardiac electrophysiology, from cell to bedside. New York: W.B. Saunders, 1990:456–462.

    Google Scholar 

  29. Danish Study Group on Verapamil in Myocardial Infarction. A review of the Danish studies on verapamil in myocardial infarction (DAVIT I and II). J Cardiovasc Pharmacol 1991;17.

  30. Reiter MJ, Synhorst DP, Mann DE. Electrophysiological effects of acute ventricular dilation in the isolated rabbit heart. Circ Res 1988;62:554–562.

    PubMed  CAS  Google Scholar 

  31. Dean JW, Lab MJ. Arrhythmia in heart failure: Role of mechanically induced changes in electrophysiology. Lancet 1989;1:1309–1311.

    Article  PubMed  CAS  Google Scholar 

  32. Veniant M, Clozel JP, Hess P, Wolfgang R. RO 40-5967 in contrast to diltiazem and verapamil does not reduce left ventricular function in rats without and with chronic myocardial infarction (abstr). Calcium Antagonists in Cardiovascular Care, Second International Symposium, Basel, Switzerland, February 1991.

  33. Hester RK, Shibata S. KT-362 related effects on intracellular calcium release and associated clinical potential: Arrhythmias, myocardial ischemia, and hypertension. Cardiovasc Drugs Ther 1990;4:1345–1354.

    Article  PubMed  CAS  Google Scholar 

  34. Francis GS. Calcium channel blockers and congestive heart failure. Circulation 1991;83:336–338.

    PubMed  CAS  Google Scholar 

  35. Posel D, Noakes T, Kantor P, et al. Exercise training after experimental myocardial infarction increases the ventricular fibrillation threshold before and after the onset of reinfarction in the isolated rat heart. Circulation 1989;80: 138–145.

    PubMed  CAS  Google Scholar 

  36. Richardt G, Haass M, Schomig A. Calcium antagonists and cardiac noradrenaline release in ischemia. J Mol Cell Cardiol 1991;23:269–277.

    Article  PubMed  CAS  Google Scholar 

  37. Lichstein E, Hager WD, Gregory JJ, et al. for the Multicenter Diltiazem Post-Infarction Research Group. Relation between beta-adrenergic blocker use, various correlates of left ventricular function and the chance of developing congestive heart failure. J Am Coll Cardiol 1990;16:1327–1332.

    Article  PubMed  CAS  Google Scholar 

  38. Clusin WT. What is the solution to sudden cardiac death: Calcium modulation or arrhythmia clinics? Cardiovasc Drugs Ther 1987;1:335–342.

    Article  PubMed  CAS  Google Scholar 

  39. Podzuweit T. Early arrhythmias resulting from acute myocardial ischemia: Possible role of cyclic AMP. In: Parratt JR, ed. Early arrhythmias resulting from myocardial ischaemia. London: MacMillan, 1982:171–198.

    Google Scholar 

  40. Packer M. Calcium channel blockers in chronic heart failure. The risks of “physiologically rational” therapy. Circulation 1990;82:2254–2257.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Opie, L.H. Should calcium antagonists be used after myocardial infarction? Ischemia selectivity versus vascular selectivity. Cardiovasc Drug Ther 6, 19–24 (1992). https://doi.org/10.1007/BF00050912

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00050912

Key Words

Navigation