Skip to main content

Role of SNAREs in Membrane Fusion

  • Chapter
Book cover Cell Fusion in Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 713))

Abstract

Fusion between opposing cellular membranes is essential for numerous cellular activities such as protein maturation, neurotransmission, hormone secretion, and enzyme release. The universal molecular mechanism of membrane fusion involves Ca2+, and the assembly of a specialized set of proteins present in the opposing membrane bilayers. For example in cell secretion, target membrane proteins at the cell plasma membrane SNAP-25 and syntaxin termed t-SNAREs, and secretory vesicle-associated protein VAMP or v-SNARE, are part of the conserved protein complex involved in fusion of opposing membranes. In the presence of Ca2+, t-SNAREs and v-SNARE in opposing bilayers interact and self-assemble in a ring conformation, to form conducting channels. Such self-assembly of t-/v-SNARE ring occurs only when the respective SNAREs are in association with membrane. The size of the SNARE ring complex is dependent on the curvature of the opposing bilayers. Electron density map and 3-D topography of the SNARE ring complex, suggests the formation of a leak-proof channel measuring 25 Å in ring thickness, and 42 Å in height. The mechanism of membrane-directed SNARE ring complex assembly, and the mathematical prediction of SNARE ring size, has been determined. X-ray diffraction measurements and simulation studies have further advanced that membrane-associated t-SNAREs and v-SNARE overcome repulsive forces to bring the opposing membranes close to within a distance of approximately 2.8 Å. Calcium is then able to bridge the closely apposed bilayers, leading to the release of water from hydrated Ca2+ ions as well as the loosely coordinated water at phospholipid head groups, leading to membrane destabilization and fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malhotra V, Orci L, Glick BS et al (1988) Role of an N-ethylmaleimide-sensitive transport component in promoting fusion of transport vesicles with cisternae of the Golgi stack. Cell 54:221–227

    Article  PubMed  CAS  Google Scholar 

  2. Bennett MK, Calakos N, Scheller RH (1992) Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257:255–259

    Article  PubMed  CAS  Google Scholar 

  3. Oyler GA, Higgins GA, Hart RA et al (1989) The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J Cell Biol 109:3039–3052

    Article  PubMed  CAS  Google Scholar 

  4. Trimble WS, Cowan DM, Scheller RH (1988) VAMP-1: a synaptic vesicle-associated integral membrane protein. Proc Natl Acad Sci USA 85:4538–4542

    Article  PubMed  CAS  Google Scholar 

  5. Cho SJ, Kelly M, Rognlien KT et al (2002) SNAREs in opposing bilayers interact in a circular array to form conducting pores. Biophys J 83:2522–2527

    Article  PubMed  CAS  Google Scholar 

  6. Cho WJ, Jena BP (2007) N-ethylmaleimide-Sensitive Factor is a Right-Handed Molecular Motor. J Biomed Nanotech 3:209–211

    Article  CAS  Google Scholar 

  7. Cho WJ, Jeremic A, Jena BP (2005) Size of supramolecular SNARE complex: membrane-directed self-assembly. J Am Chem Soc 127:10156–10157

    Article  PubMed  CAS  Google Scholar 

  8. Jeremic A, Cho WJ, Jena BP (2004) Membrane fusion: what may transpire at the atomic level. J Biol Phys Chem 4:139–142

    Article  CAS  Google Scholar 

  9. Jeremic A, Kelly M, Cho JA et al (2004) Calcium drives fusion of SNARE-apposed bilayers. Cell Biol Int 28:19–31

    Article  PubMed  CAS  Google Scholar 

  10. Jeremic A, Quinn AS, Cho WJ et al (2006) Energy-dependent disassembly of self-assembled SNARE complex: observation at nanometer resolution using atomic force microscopy. J Am Chem Soc 128:26–27

    Article  PubMed  CAS  Google Scholar 

  11. Weber T, Zemelman BV, McNew JA et al (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92:759–772

    Article  PubMed  CAS  Google Scholar 

  12. Cho WJ, Lee JS, Ren G et al (2011) Membrane-directed molecular assembly of the neuronal SNARE complex. J Cell Mol Med 15:31–37

    Google Scholar 

  13. Bako I, Hutter J, Palinkas G (2002) Car–Parrinello molecular dynamics simulation of the hydrated calcium ion. J Chem Phys 117:9838–9843

    Article  CAS  Google Scholar 

  14. Chialvo AA, Simonson JM (2003) The structure of CaCl2 aqueous solutions over a wide range of concentration. Interpretation of diffraction experiments via molecular simulation. J Chem Phys 119:8052–8061

    Article  CAS  Google Scholar 

  15. McIntosh TJ (2000) Short-range interactions between lipid bilayers measured by X-ray diffraction. Curr Opin Struct Biol 10:481–485

    Article  PubMed  CAS  Google Scholar 

  16. Portis A, Newton C, Pangborn W et al (1979) Studies on the mechanism of membrane fusion: evidence for an intermembrane Ca2+-phospholipid complex, synergism with Mg2+, and inhibition by spectrin. Biochemistry 18:780–790

    Article  PubMed  CAS  Google Scholar 

  17. Laroche G, Dufourc EJ, Dufourcq J et al (1991) Structure and dynamics of dimyristoylphosphatidic acid/calcium complexes by 2H NMR, infrared, spectroscopies and small-angle x-ray diffraction. Biochemistry 30:3105–3114

    Article  PubMed  CAS  Google Scholar 

  18. Potoff JJ, Issa Z, Manke CW, Jr et al (2008) Ca2+-dimethylphosphate complex formation: providing insight into Ca2+-mediated local dehydration and membrane fusion in cells. Cell Biol Int 32:361–366

    Article  PubMed  CAS  Google Scholar 

  19. Cook JD, Cho WJ, Stemmler TL et al (2008) Circular dichroism (CD) spectroscopy of the assembly and disassembly of SNAREs: The proteins involved in membrane fusion in cells. Chem Phy Lett 462:6–9

    Article  CAS  Google Scholar 

  20. Cohen FS, Niles WD (1993) Reconstituting channels into planar membranes: a conceptual framework and methods for fusing vesicles to planar bilayer phospholipid membranes. Methods Enzymol 220:50–68

    Article  PubMed  CAS  Google Scholar 

  21. Kelly ML, Woodbury DJ (1996) Ion channels from synaptic vesicle membrane fragments reconstituted into lipid bilayers. Biophys J 70:2593–2599

    Article  PubMed  CAS  Google Scholar 

  22. Woodbury DJ (1999) Nystatin/ergosterol method for reconstituting ion channels into planar lipid bilayers. Methods Enzymol 294:319–339

    Article  PubMed  CAS  Google Scholar 

  23. Woodbury DJ, Miller C (1990) Nystatin-induced liposome fusion. A versatile approach to ion channel reconstitution into planar bilayers. Biophys J 58:833–839

    Article  PubMed  CAS  Google Scholar 

  24. Jeong EH, Webster P, Khuong CQ et al (1998) The native membrane fusion machinery in cells. Cell Biol Int 22:657–670

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhanu P. Jena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Jena, B.P. (2011). Role of SNAREs in Membrane Fusion. In: Dittmar, T., Zänker, K.S. (eds) Cell Fusion in Health and Disease. Advances in Experimental Medicine and Biology, vol 713. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0763-4_3

Download citation

Publish with us

Policies and ethics