Skip to main content

Stem Cells and Corneal Epithelial Maintenance: Insights from the Mouse and Other Animal Models

  • Chapter
  • First Online:

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 55))

Abstract

Maintenance of the corneal epithelium is essential for vision and is a dynamic process incorporating constant cell production, movement and loss. Although cell-based therapies involving the transplantation of putative stem cells are well advanced for the treatment of human corneal defects, the scientific understanding of these interventions is poor. No definitive marker that discriminates stem cells that maintain the corneal epithelium from the surrounding tissue has been discovered and the identity of these elusive cells is, therefore, hotly debated. The key elements of corneal epithelial maintenance have long been recognised but it is still not known how this dynamic balance is co-ordinated during normal homeostasis to ensure the corneal epithelium is maintained at a uniform thickness. Most indirect experimental evidence supports the limbal epithelial stem cell (LESC) hypothesis, which proposes that the adult corneal epithelium is maintained by stem cells located in the limbus at the corneal periphery. However, this has been challenged recently by the corneal epithelial stem cell (CESC) hypothesis, which proposes that during normal homeostasis the mouse corneal epithelium is maintained by stem cells located throughout the basal corneal epithelium with LESCs only contributing during wound healing. In this chapter we review experimental studies, mostly based on animal work, that provide insights into how stem cells maintain the normal corneal epithelium and consider the merits of the alternative LESC and CESC hypotheses. Finally, we highlight some recent research on other stem cell systems and consider how this could influence future research directions for identifying the stem cells that maintain the corneal epithelium.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adachi W, Ulanovsky H, Li Y, Norman B, Davis J, Piatigorsky J (2006) Serial analysis of gene expression (SAGE) in the rat limbal and central corneal epithelium. Invest Ophthalmol Vis Sci 47(9):3801–3810. doi:10.1167/iovs.06-0216

    PubMed  Google Scholar 

  • Akinci MAM, Turner H, Taveras M, Wolosin JM (2009) Differential gene expression in the pig limbal side population: implications for stem cell cycling, replication, and survival. Invest Ophthalmol Vis Sci 50(12):5630–5638. doi:10.1167/iovs.09-3791

    PubMed  Google Scholar 

  • Barbaro V, Testa A, Di Iorio E, Mavilio F, Pellegrini G, De Luca M (2007) C/EBP delta regulates cell cycle and self-renewal of human limbal stem cells. J Cell Biol 177(6):1037–1049. doi:10.1083/jcb.200703003

    PubMed  CAS  Google Scholar 

  • Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449(7165):1003–1007

    PubMed  CAS  Google Scholar 

  • Barrandon Y, Green H (1985) Cell size as a determinant of the clone forming ability of human keratinocytes. Proc Natl Acad Sci USA 82(16):5390–5394

    PubMed  CAS  Google Scholar 

  • Barrandon Y, Green H (1987) Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci USA 84(8):2302–2306

    PubMed  CAS  Google Scholar 

  • Baum JL (1970) Melanocyte and Langerhans cell population of cornea and limbus in albino animal. Am J Ophthalmol 69(4):669–676

    PubMed  CAS  Google Scholar 

  • Beebe DC, Masters BR (1996) Cell lineage and the differentiation of corneal epithelial cells. Invest Ophthalmol Vis Sci 37(9):1815–1825

    PubMed  CAS  Google Scholar 

  • Bian F, Liu WB, Yoon KC, Lu R, Zhou N, Ma P, Pflugfelder SC, Li DQ (2010) Molecular signatures and biological pathway profiles of human corneal epithelial progenitor cells. Int J Biochem Cell Biol 42(7):1142–1153. doi:10.1016/j.biocel.2010.03.022

    PubMed  CAS  Google Scholar 

  • Boulton M, Albon J (2004) Stem cells in the eye. Int J Biochem Cell Biol 36(4):643–657. doi:10.1016/j.biocel.2003.10.013

    PubMed  CAS  Google Scholar 

  • Bradshaw JJ, Obritsch WF, Cho BJ, Gregerson DS, Holland EJ (1999) Ex vivo transduction of corneal epithelial progenitor cells using a retroviral vector. Invest Ophthalmol Vis Sci 40(1):230–235

    PubMed  CAS  Google Scholar 

  • Braun KM, Watt FM (2004) Epidermal label-retaining cells: background and recent applications. J Investig Dermatol Symp Proc 9(3):196–201

    PubMed  Google Scholar 

  • Bron AJ (1973) Vortex patterns of corneal epithelium. Trans Ophthalmol Soc UK 93:455–472

    PubMed  CAS  Google Scholar 

  • Buck RC (1982) Hemidesmosomes of normal and regenerating mouse corneal epithelium. Virchows Archiv B 41(1–2):1–16

    CAS  Google Scholar 

  • Buck RC (1985) Measurement of centripetal migration of normal corneal epithelial cells in the mouse. Invest Ophthalmol Vis Sci 26(9):1296–1299

    PubMed  CAS  Google Scholar 

  • Buck RC (1986) Ultrastructure of conjunctival epithelium replacing corneal epithelium. Curr Eye Res 5(2):149–159. doi:10.3109/02713688609015103

    PubMed  CAS  Google Scholar 

  • Budak MT, Alpdogan OS, Zhou MY, Lavker RM, Akinci MAM, Wolosin JM (2005) Ocular surface epithelia contain ABCG2-dependent side population cells exhibiting features associated with stem cells. J Cell Sci 118(8):1715–1724

    PubMed  CAS  Google Scholar 

  • Byrne C, Fuchs E (1993) Probing keratinocyte and differentiation specificity of the human K5 promoter in vitro and in transgenic mice. Mol Cell Biol 13(6):3176–3190

    PubMed  CAS  Google Scholar 

  • Cenedella RJ, Fleschner CR (1990) Kinetics of corneal epithelium turnover in vivo—studies of Lovastatin. Invest Ophthalmol Vis Sci 31(10):1957–1962

    PubMed  CAS  Google Scholar 

  • Chaloin-Dufau C, Pavitt I, Delorme P, Dhouailly D (1993) Identification of keratin-3 and keratin-12 in corneal epithelium of vertebrates. Epithelial Cell Biol 2(3):120–125

    PubMed  CAS  Google Scholar 

  • Chang CY, Green CR, McGhee CNJ, Sherwin T (2008) Acute wound healing in the human central corneal epithelium appears to be independent of limbal stem cell influence. Invest Ophthalmol Vis Sci 49(12):5279–5286. doi:10.1167/iovs.07-1260

    PubMed  Google Scholar 

  • Chang CYA, McGhee JJ, Green CR, Sherwin T (2011) Comparison of stem cell properties in cell populations isolated from human central and limbal corneal epithelium. Cornea 30(10):1155–1162. doi:10.1097/ICO.0b013e318213796b

    PubMed  Google Scholar 

  • Chen Z, De Paiva CS, Luo LH, Kretzer FL, Pflugfelder SC, Li DQ (2004) Characterization of putative stem cell phenotype in human limbal epithelia. Stem Cells 22(3):355–366

    PubMed  Google Scholar 

  • Chung EH, Bukusoglu G, Zieske JD (1992) Localization of corneal epithelial stem-cells in the developing rat. Invest Ophthalmol Vis Sci 33(7):2199–2206

    PubMed  CAS  Google Scholar 

  • Clayton E, Doupe DP, Klein AM, Winton DJ, Simons BD, Jones PH (2007) A single type of progenitor cell maintains normal epidermis. Nature 446(7132):185–189

    PubMed  CAS  Google Scholar 

  • Collinson JM, Quinn JC, Buchanan MA, Kaufman MH, Wedden SE, West JD, Hill RE (2001) Primary defects in the lens underlie complex anterior segment abnormalities of the Pax6 heterozygous eye. Proc Natl Acad Sci USA 98(17):9688–9693

    PubMed  CAS  Google Scholar 

  • Collinson JM, Morris L, Reid AI, Ramaesh T, Keighren MA, Flockhart JH, Hill RE, Tan SS, Ramaesh K, Dhillon B, West JD (2002) Clonal analysis of patterns of growth, stem cell activity, and cell movement during the development and maintenance of the murine corneal epithelium. Dev Dyn 224(4):432–440

    PubMed  Google Scholar 

  • Collinson JM, Chanas SA, Hill RE, West JD (2004a) Corneal development, limbal stem cell function, and corneal epithelial cell migration in the Pax6 +/− mouse. Invest Ophthalmol Vis Sci 45(4):1101–1108

    PubMed  Google Scholar 

  • Collinson JM, Hill RE, West JD (2004b) Analysis of mouse eye development with chimeras and mosaics. Int J Dev Biol 48(8–9):793–804

    PubMed  Google Scholar 

  • Cotsarelis G, Cheng SZ, Dong G, Sun TT, Lavker RM (1989) Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 57(2):201–209

    PubMed  CAS  Google Scholar 

  • Daniels JT, Dart JKG, Tuft SJ, Khaw PT (2001) Corneal stem cells in review. Wound Repair Regen 9(6):483–494

    PubMed  CAS  Google Scholar 

  • Davanger M, Evensen A (1971) Role of the pericorneal papillary structure in renewal of corneal epithelium. Nature 229:560–561

    PubMed  CAS  Google Scholar 

  • Davis J, Duncan MK, Robison WG, Piatigorsky J (2003) Requirement for Pax6 in corneal morphogenesis: a role in adhesion. J Cell Sci 116(11):2157–2167

    PubMed  CAS  Google Scholar 

  • de Paiva CS, Chen Z, Corrales RM, Pflugfelder SC, Li DQ (2005) ABCG2 transporter identifies a population of clonogenic human limbal epithelial cells. Stem Cells 23(1):63–73. doi:10.1634/stemcells.2004-0093

    PubMed  Google Scholar 

  • Di Iorio E, Barbaro V, Ruzza A, Ponzin D, Pellegrini G, De Luca M (2005) Isoforms of Delta Np63 and the migration of ocular limbal cells in human corneal regeneration. Proc Natl Acad Sci USA 102(27):9523–9528. doi:10.1073/pnas.0503437102

    PubMed  Google Scholar 

  • Di Iorio E, Kaye SB, Ponzin D, Barbaro V, Ferrari S, Böhm E, Nardiello P, Castaldo G, McGrath JA, Willoughby CE (2012) Limbal stem cell deficiency and ocular phenotype in ectrodactyly-ectodermal dysplasia-clefting syndrome caused by p63 mutations. Ophthalmology 119(1):74–83. doi:10.1016/j.ophtha.2011.06.044

    PubMed  Google Scholar 

  • Ding ZH, Dong J, Liu J, Deng SX (2008) Preferential gene expression in the limbus of the vervet monkey. Mol Vis 14(240):2031–2041

    PubMed  CAS  Google Scholar 

  • Dorà N, Ou J, Kucerova R, Parisi I, West JD, Collinson JM (2008) PAX6 dosage effects on corneal development, growth and wound healing. Dev Dyn 237(5):1295–1306

    PubMed  Google Scholar 

  • Douvaras P, Webb S, Whitaker DA, Dorà N, Hill RE, Dorin JR, West JD (2012) Rare corneal clones in mice suggest an age-related decrease of stem cell activity and support the limbal epithelial stem cell hypothesis. Stem Cell Res 8:109–119

    PubMed  CAS  Google Scholar 

  • Du YD, Funderburgh ML, SundarRaj N, Funderburgh JL (2005) Multipotent stem cells in human corneal stroma. Stem Cells 23(9):1266–1275

    PubMed  Google Scholar 

  • Dua HS, Azuara-Blanco A (2000) Limbal stem cells of the corneal epithelium. Surv Ophthalmol 44(5):415–425. doi:10.1016/s0039-6257(00)00109-0

    PubMed  CAS  Google Scholar 

  • Dua HS, Shanmuganathan VA, Powell-Richards AO, Tighe PJ, Joseph A (2005) Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche. Br J Ophthalmol 89(5):529–532

    PubMed  CAS  Google Scholar 

  • Dua HS, Miri A, Alomar T, Yeung AM, Said DG (2009) The role of limbal stem cells in corneal epithelial maintenance testing the dogma. Ophthalmology 116(5):856–863. doi:10.1016/j.ophtha.2008.12.017

    PubMed  Google Scholar 

  • Endo M, Zoltick PW, Chung DC, Bennett J, Radu A, Muvarak N, Flake AW (2007) Gene transfer to ocular stem cells by early gestational intraamniotic injection of lentiviral vector. Mol Ther 15(3):579–587

    PubMed  CAS  Google Scholar 

  • Figueira EC, Di Girolamo N, Coroneo MT, Wakefield D (2007) The phenotype of limbal epithelial stem cells. Invest Ophthalmol Vis Sci 48(1):144–156

    PubMed  Google Scholar 

  • Friedenwald JS (1951) Growth pressure and metaplasia of conjunctival and corneal epithelium. Doc Ophthalmol 5–6:184–192. doi:10.1007/bf00143661

    PubMed  Google Scholar 

  • Funderburgh ML, Du YQ, Mann MM, SundarRaj N, Funderburgh JL (2005) PAX6 expression identifies progenitor cells for corneal keratocytes. FASEB J 19(7):1371–1373

    PubMed  CAS  Google Scholar 

  • Gage PJ, Rhoades W, Prucka SK, Hjalt T (2005) Fate maps of neural crest and mesoderm in the mammalian eye. Invest Ophthalmol Vis Sci 46(11):4200–4208

    PubMed  Google Scholar 

  • Gaspar-Maia A, Alajem A, Polesso F, Sridharan R, Mason MJ, Heidersbach A, Ramalho-Santos J, McManus MT, Plath K, Meshorer E, Ramalho-Santos M (2009) Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature 460(7257):863–868. doi:10.1038/nature08212

    PubMed  CAS  Google Scholar 

  • Goldberg MF, Bron AJ (1982) Limbal palisades of Vogt. Trans Am Ophthalmol Soc 80:155–171

    PubMed  CAS  Google Scholar 

  • Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183(4):1797–1806. doi:10.1084/jem.183.4.1797

    PubMed  CAS  Google Scholar 

  • Hanna C, O’Brien JE (1960) Cell production and migration in the epithelial layer of the cornea. Arch Ophthal 64(4):536–539

    PubMed  CAS  Google Scholar 

  • Haustein J (1983) On the ultrastructure of the developing and adult mouse corneal stroma. Anat Embryol 168(2):291–305

    PubMed  CAS  Google Scholar 

  • Hayashi R, Yamato M, Sugiyama H, Sumide T, Yang J, Okano T, Tano Y, Nishida K (2007) N-cadherin is expressed by putative stem/progenitor cells and melanocytes in the human limbal epithelial stem cell niche. Stem Cells 25(2):289–296. doi:10.1634/stemcells.2006-0167

    PubMed  CAS  Google Scholar 

  • He SH, Nakada D, Morrison SJ (2009) Mechanisms of stem cell self-renewal. Ann Rev Cell Dev Biol 25:377–406. doi:10.1146/annurev.cellbio.042308.113248

    CAS  Google Scholar 

  • Hesse M, Zimek A, Weber K, Magin TM (2004) Comprehensive analysis of keratin gene clusters in humans and rodents. Eur J Cell Biol 83(1):19–26

    PubMed  CAS  Google Scholar 

  • Holland EJ, Djalilian AR, Schwartz GS (2003) Management of aniridic keratopathy with keratolimbal allograft: a limbal stem cell transplantation technique. Ophthalmology 110(1):125–130

    PubMed  Google Scholar 

  • Huang AJW, Tseng SCG (1991) Corneal epithelial wound healing in the absence of limbal epithelium. Invest Ophthalmol Vis Sci 32(1):96–105

    PubMed  CAS  Google Scholar 

  • Hutt JA, O’Rourke JP, DeWille J (2000) Signal transducer and activator of transcription 3 activates CCAAT enhancer-binding protein delta gene transcription in G(0) growth-arrested mouse mammary epithelial cells and in involuting mouse mammary gland. J Biol Chem 275(37):29123–29131. doi:10.1074/jbc.M004476200

    PubMed  CAS  Google Scholar 

  • Imanishi J, Kamiyama K, Iguchi I, Kita M, Sotozono C, Kinoshita S (2000) Growth factors: importance in wound healing and maintenance of transparency of the cornea. Prog Retin Eye Res 19(1):113–129

    PubMed  CAS  Google Scholar 

  • Ito M, Liu YP, Yang ZX, Nguyen J, Liang F, Morris RJ, Cotsarelis G (2005) Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11(12):1351–1354. doi:10.1038/nm1328

    PubMed  CAS  Google Scholar 

  • Jaks V, Barker N, Kasper M, Van Es JH, Snippert HJ, Clevers H, Toftgard R (2008) Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet 40(11):1291–1299

    PubMed  CAS  Google Scholar 

  • Jones MA, Marfurt CF (1996) Sympathetic stimulation of corneal epithelial proliferation in wounded and nonwounded rat eyes. Invest Ophthalmol Vis Sci 37(13):2535–2547

    PubMed  CAS  Google Scholar 

  • Joyce NC (2003) Proliferative capacity of the corneal endothelium. Prog Retin Eye Res 22(3):359–389. doi:10.1016/s1350-9462(02)00065-4

    PubMed  CAS  Google Scholar 

  • Kaur P, Potten CS (2011) The interfollicular epidermal stem cell saga: sensationalism versus reality check. Exp Dermatol 20(9):697–702. doi:10.1111/j.1600-0625.2011.01338.x

    PubMed  Google Scholar 

  • Kawakita T, Higa K, Shimmura S, Tomita M, Tsubota K, Shimazaki J (2011) Fate of corneal epithelial cells separated from limbus in vivo. Invest Ophthalmol Vis Sci 52(11):8132–8137. doi:10.1167/iovs.11-7984

    PubMed  Google Scholar 

  • Kenyon KR, Tseng SCG (1989) Limbal autograft transplantation for ocular surface disorders. Ophthalmology 96(5):709–723

    PubMed  CAS  Google Scholar 

  • Kinoshita S, Friend J, Thoft RA (1981) Sex chromatin of donor corneal epithelium in rabbits. Invest Ophthalmol Vis Sci 21(3):434–441

    PubMed  CAS  Google Scholar 

  • Klein AM, Simons BD (2011) Universal patterns of stem cell fate in cycling adult tissues. Development 138(15):3103–3111. doi:10.1242/dev.060103

    PubMed  CAS  Google Scholar 

  • Klein AM, Nakagawa T, Ichikawa R, Yoshida S, Simons BD (2010) Mouse germ line stem cells undergo rapid and stochastic turnover. Cell Stem Cell 7(2):214–224. doi:10.1016/j.stem.2010.05.017

    PubMed  CAS  Google Scholar 

  • Krulova M, Pokorna K, Lencova A, Fric J, Zajicova A, Filipec M, Forrester JV, Holan V (2008) A rapid separation of two distinct populations of mouse corneal epithelial cells with limbal stem cell characteristics by centrifugation on Percoll gradient. Invest Ophthalmol Vis Sci 49(9):3903–3908. doi:10.1167/iovs.08-1987

    PubMed  Google Scholar 

  • Kruse FE (1994) Stem cells and corneal epithelial regeneration. Eye 8:170–183

    PubMed  Google Scholar 

  • Kucerova R, Dorà N, Mort RL, Wallace K, Leiper LJ, Lowes C, Neves C, Walczysko P, Bruce F, Fowler PA, Rajnicek AM, McCaig CD, Zhao M, West JD, Collinson JM (2012) Interaction between hedgehog signalling and PAX6 dosage mediates maintenance and regeneration of the corneal epithelium. Mol Vis 18:139–150

    PubMed  CAS  Google Scholar 

  • Kulkarni BB, Tighe PJ, Mohammed I, Yeung AM, Powe DG, Hopkinson A, Shanmuganathan VA, Dua HS (2010) Comparative transcriptional profiling of the limbal epithelial crypt demonstrates its putative stem cell niche characteristics. BMC Genomics 11:526. doi:10.1186/1471-2164-11-526

    PubMed  Google Scholar 

  • Lauweryns B, Vandenoord JJ, Devos R, Missotten L (1993) A new epithelial-cell type in the human cornea. Invest Ophthalmol Vis Sci 34(6):1983–1990

    PubMed  CAS  Google Scholar 

  • Lavker RM, Dong G, Cheng SZ, Kudoh K, Cotsarelis G, Sun TT (1991) Relative proliferative rates of limbal and corneal epithelia—implications of corneal epithelial migration, circadian rhythm, and suprabasally located DNA-synthesizing keratinocytes. Invest Ophthalmol Vis Sci 32(6):1864–1875

    PubMed  CAS  Google Scholar 

  • Lehrer MS, Sun TT, Lavker RM (1998) Strategies of epithelial repair: modulation of stem cell and transit amplifying cell proliferation. J Cell Sci 111:2867–2875

    PubMed  CAS  Google Scholar 

  • Leiper LJ, Walczysko P, Kucerova R, Ou JX, Shanley LJ, Lawson D, Forrester JV, McCaig CD, Zhao M, Collinson JM (2006) The roles of calcium signaling and ERK1/2 phosphorylation in a Pax6 +/− mouse model of epithelial wound-healing delay. BMC Biol 4:27

    PubMed  Google Scholar 

  • Lemp MA, Mathers WD (1989) Corneal epithelial cell movement in humans. Eye 3:438–445

    PubMed  Google Scholar 

  • Levy V, Lindon C, Zheng Y, Harfe BD, Morgan BA (2007) Epidermal stem cells arise from the hair follicle after wounding. FASEB J 21(7):1358–1366. doi:10.1096/fj.06-6926com

    PubMed  CAS  Google Scholar 

  • Li LH, Clevers H (2010) Coexistence of quiescent and active adult stem cells in mammals. Science 327(5965):542–545. doi:10.1126/science.1180794

    PubMed  CAS  Google Scholar 

  • Li W, Hayashida Y, Chen YT, Tseng SCG (2007) Niche regulation of corneal epithelial stem cells at the limbus. Cell Res 17(1):26–36

    PubMed  Google Scholar 

  • Li W, Chen YT, Hayashida Y, Blanco G, Kheirkah A, He H, Chen SY, Liu CY, Tseng SCG (2008) Down-regulation of Pax6 is associated with abnormal differentiation of corneal epithelial cells in severe ocular surface diseases. J Pathol 214(1):114–122

    PubMed  CAS  Google Scholar 

  • Lopez-Garcia C, Klein AM, Simons BD, Winton DJ (2010) Intestinal stem cell replacement follows a pattern of neutral drift. Science 330(6005):822–825. doi:10.1126/science.1196236

    PubMed  CAS  Google Scholar 

  • Lu H, Zimek A, Chen J, Hesse M, Bussow H, Weber K, Magin TM (2006) Keratin 5 knockout mice reveal plasticity of keratin expression in the corneal epithelium. Eur J Cell Biol 85(8):803–811

    PubMed  CAS  Google Scholar 

  • Lyngholm M, Hoyer PE, Vorum H, Nielsen K, Ehlers N, Mollgard K (2008a) Immunohistochemical markers for corneal stem cells in the early developing human eye. Exp Eye Res 87(2):115–121. doi:10.1016/j.exer.2008.05.004

    PubMed  CAS  Google Scholar 

  • Lyngholm M, Vorum H, Nielsen K, Ostergaard M, Honore B, Ehlers N (2008b) Differences in the protein expression in limbal versus central human corneal epithelium—a search for stem cell markers. Exp Eye Res 87(2):96–105. doi:10.1016/j.exer.2008.05.001

    PubMed  CAS  Google Scholar 

  • Mackman G, Brightbill F, Optiz J (1979) Corneal changes in aniridia. Am J Ophthalmol 8:497–502

    Google Scholar 

  • Majo F, Rochat A, Nicolas M, Jaoude GA, Barrandon Y (2008) Oligopotent stem cells are distributed throughout the mammalian ocular surface. Nature 456(7219):250–255

    PubMed  CAS  Google Scholar 

  • McCaig CD, Rajnicek AM, Song B, Zhao M (2005) Controlling cell behavior electrically: current views and future potential. Physiol Rev 85(3):943–978. doi:10.1152/physrev.00020.2004

    PubMed  Google Scholar 

  • McGowan SL, Edelhauser HF, Pfister RR, Whikehart DR (2007) Stem cell markers in the human posterior limbus and corneal endothelium of unwounded and wounded corneas. Mol Vis 13(223–27):1984–2000

    PubMed  CAS  Google Scholar 

  • McKenna CC, Lwigale PY (2011) Innervation of the mouse cornea during development. Invest Ophthalmol Vis Sci 52(1):30–35. doi:10.1167/iovs.10-5902

    PubMed  Google Scholar 

  • Mills AA, Zheng BH, Wang XJ, Vogel H, Roop DR, Bradley A (1999) p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398(6729):708–713

    PubMed  CAS  Google Scholar 

  • Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ (2003) Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425(6961):962–967. doi:10.1038/nature02060

    PubMed  CAS  Google Scholar 

  • Molofsky AV, He SH, Bydon M, Morrison SJ, Pardal R (2005) Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev 19(12):1432–1437. doi:10.1101/gad.1299505

    PubMed  CAS  Google Scholar 

  • Moore KA, Lemischka IR (2006) Stem cells and their niches. Science 311(5769):1880–1885

    PubMed  CAS  Google Scholar 

  • Moore JE, McMullen CBT, Mahon G, Adamis AP (2002) The corneal epithelial stem cell. DNA Cell Biol 21(5–6):443–451

    PubMed  CAS  Google Scholar 

  • Mort RA (2007) Stem cells function in the mouse corneal epithelium. PhD thesis, University of Edinburgh

    Google Scholar 

  • Mort RL, Ramaesh T, Kleinjan DA, Morley SD, West JD (2009) Mosaic analysis of stem cell function and wound healing in the mouse corneal epithelium. BMC Dev Biol 9:4

    PubMed  Google Scholar 

  • Mort RL, Bentley AJ, Martin FL, Collinson JM, Douvaras P, Hill RE, Morley SD, Fullwood NJ, West JD (2011) Effects of aberrant Pax6 gene dosage on mouse corneal pathophysiology and corneal epithelial homeostasis. PLoS One 6(12):e28895. doi:doi:10.1371/journal.pone.0028895

    PubMed  CAS  Google Scholar 

  • Nagasaki T, Zhao J (2003) Centripetal movement of corneal epithelial cells in the normal adult mouse. Invest Ophthalmol Vis Sci 44(2):558–566

    PubMed  Google Scholar 

  • Nagasaki T, Zhao J (2005) Uniform distribution of epithelial stem cells in the bulbar conjunctiva. Invest Ophthalmol Vis Sci 46(1):126–132

    PubMed  Google Scholar 

  • Nakagawa T, Nabeshima YI, Yoshida S (2007) Functional identification of the actual and potential stem cell compartments in mouse spermatogenesis. Dev Cell 12(2):195–206

    PubMed  CAS  Google Scholar 

  • Nelson LB, Spaeth GL, Nowinski TS, Margo CE, Jackson L (1984) Aniridia—a review. Surv Ophthalmol 28(6):621–642. doi:10.1016/0039-6257(84)90184-x

    PubMed  CAS  Google Scholar 

  • Nieto-Miguel T, Calonge M, de la Mata A, Lopez-Paniagua M, Galindo S, de la Paz MF, Corrales RM (2011) A comparison of stem cell-related gene expression in the progenitor-rich limbal epithelium and the differentiating central corneal epithelium. Mol Vis 17(229–31):2102–2117

    PubMed  CAS  Google Scholar 

  • Nishida K, Kinoshita S, Ohashi Y, Kuwayama Y, Yamamoto S (1995) Ocular surface abnormalities in aniridia. Am J Ophthalmol 120(3):368–375

    PubMed  CAS  Google Scholar 

  • Norman B, Davis J, Piatigorsky J (2004) Postnatal gene expression in the normal mouse cornea by SAGE. Invest Ophthalmol Vis Sci 45(2):429–440. doi:10.1167/iovs.03-0449

    PubMed  Google Scholar 

  • Notara M, Schrader S, Daniels JT (2011) The porcine limbal epithelial stem cell niche as a new model for the study of transplanted tissue-engineered human limbal epithelial cells. Tissue Eng Part A 17(5–6):741–750. doi:10.1089/ten.TEA.2010.0343

    PubMed  CAS  Google Scholar 

  • Notara M, Shortt AJ, O’Callaghan AR, Daniels JT (2012) The impact of age on the physical and cellular properties of the human limbal stem cell niche. Age. Published online 18 January 2012. doi: 10.1007/s11357-011-9359-5

  • O’Rourke JP, Newbound GC, Hutt JA, DeWille J (1999) CCAAT/enhancer-binding protein delta regulates mammary epithelial cell G(0) growth arrest and apoptosis. J Biol Chem 274(23):16582–16589. doi:10.1074/jbc.274.23.16582

    PubMed  Google Scholar 

  • Ou J, Walczysko P, Kucerova R, Rajnicek AM, McCaig CD, Zhao M, Collinson JM (2008) Chronic wound state exacerbated by oxidative stress in Pax6 +/− aniridia-related keratopathy. J Pathol 215(4):421–430

    PubMed  CAS  Google Scholar 

  • Pajoohesh-Ganji A, Ghosh SP, Stepp MA (2004) Regional distribution of α9β1 integrin within the limbus of the mouse ocular surface. Dev Dynam 230(3):518–528

    CAS  Google Scholar 

  • Pal-Ghosh S, Pajoohesh-Ganji A, Brown M, Stepp MA (2004) A mouse model for the study of recurrent corneal epithelial erosions: α9β1 integrin implicated in progression of the disease. Invest Ophthalmol Vis Sci 45(6):1775–1788

    PubMed  Google Scholar 

  • Park IK, Qian DL, Kiel M, Becker MW, Pihalja M, Weissman IL, Morrison SJ, Clarke MF (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423(6937):302–305. doi:10.1038/nature01587

    PubMed  CAS  Google Scholar 

  • Parsa R, Yang A, McKeon F, Green H (1999) Association of p63 with proliferative potential in normal and neoplastic human keratinocytes. J Invest Dermatol 113(6):1099–1105. doi:10.1046/j.1523-1747.1999.00780.x

    PubMed  CAS  Google Scholar 

  • Pellegrini G, Golisano O, Paterna P, Lambiase A, Bonini S, Rama P, De Luca M (1999) Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. J Cell Biol 145(4):769–782

    PubMed  CAS  Google Scholar 

  • Pellegrini G, Dellambra E, Golisano O, Martinelli E, Fantozzi I, Bondanza S, Ponzin D, McKeon F, De Luca M (2001) p63 identifies keratinocyte stem cells. Proc Natl Acad Sci USA 98(6):3156–3161

    PubMed  CAS  Google Scholar 

  • Potten CS, Loeffler M (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties—lessons for and from the crypt. Development 110(4):1001–1020

    PubMed  CAS  Google Scholar 

  • Pratt T, Sharp L, Nichols T, Price DJ, Mason JO (2000) Embryonic stem cells and transgenic mice ubiquitously expressing a tau-tagged green fluorescent protein. Dev Biol 228(1):19–28

    PubMed  CAS  Google Scholar 

  • Qi H, Li DQ, Shine HD, Chen Z, Yoon KC, Jones DB, Pflugfelder SC (2008) Nerve growth factor and its receptor TrkA serve as potential markers for human corneal epithelial progenitor cells. Exp Eye Res 86(1):34–40. doi:10.1016/j.exer.2007.09.003

    PubMed  CAS  Google Scholar 

  • Rama P, Matuska S, Paganoni G, Spinelli A, De Luca M, Pellegrini G (2010) Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med 363(2):147–155. doi:10.1056/NEJMoa0905955

    PubMed  CAS  Google Scholar 

  • Ramaesh T, Collinson JM, Ramaesh K, Kaufman MH, West JD, Dhillon B (2003) Corneal abnormalities in Pax6 +/− small eye mice mimic human aniridia-related keratopathy. Invest Ophthalmol Vis Sci 44(5):1871–1878

    PubMed  Google Scholar 

  • Ramaesh T, Ramaesh K, Collinson JM, Chanas SA, Dhillon B, West JD (2005) Developmental and cellular factors underlying corneal epithelial dysgenesis in the Pax6 +/− mouse model of aniridia. Exp Eye Res 81(2):224–235

    PubMed  CAS  Google Scholar 

  • Ramaesh T, Ramaesh K, Leask R, Springbett A, Riley SC, Dhillon B, West JD (2006) Increased apoptosis and abnormal wound-healing responses in the heterozygous Pax6 +/− mouse cornea. Invest Ophthalmol Vis Sci 47(5):1911–1917

    PubMed  Google Scholar 

  • Ren HW, Wilson G (1996) The cell shedding rate of the corneal epithelium—a comparison of collection methods. Curr Eye Res 15(10):1054–1059

    PubMed  CAS  Google Scholar 

  • Romano AC, Espana EM, Yoo SH, Budak MT, Wolosin JM, Tseng SCG (2003) Different cell sizes in human limbal and central corneal basal epithelia measured by confocal microscopy and flow cytometry. Invest Ophthalmol Vis Sci 44(12):5125–5129. doi:10.1167/iovs.03-0628

    PubMed  Google Scholar 

  • Sangiorgi E, Capecchi MR (2008) Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet 40(7):915–920

    PubMed  CAS  Google Scholar 

  • Schedl A, Ross A, Lee M, Engelkamp D, Rashbass P, van Heyningen V, Hastie ND (1996) Influence of Pax6 gene dosage on development—overexpression causes severe eye abnormalities. Cell 86(1):71–82

    PubMed  CAS  Google Scholar 

  • Schermer A, Galvin S, Sun TT (1986) Differentiation-related expression of a major 64k corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol 103(1):49–62

    PubMed  CAS  Google Scholar 

  • Schlotzer-Schrehardt U, Kruse FE (2005) Identification and characterization of limbal stem cells. Exp Eye Res 81(3):247–264

    PubMed  Google Scholar 

  • Schultz G, Khaw PT, Oxford K, Macauley S, Vansetten G, Chegini N (1994) Growth factors and ocular wound healing. Eye 8:184–187

    PubMed  Google Scholar 

  • Sharma A, Coles WH (1989) Kinetics of corneal epithelial maintenance and graft loss—a population balance model. Invest Ophthalmol Vis Sci 30(9):1962–1971

    PubMed  CAS  Google Scholar 

  • Sherwin T (2009) A new niche for the corneal epithelial stem cell. Clin Exp Ophthalmol 37(7):644–645. doi:10.1111/j.1442-9071.2009.02138.x

    Google Scholar 

  • Shortt AJ, Secker GA, Limb GA, Khaw PT, Daniels JT (2007a) Transplantation of ex vivo cultured limbal epithelial stem cells: a review of techniques and clinical results. Surv Ophthalmol 52(5):483–502. doi:10.1016/j.survophthal.2007.06.013

    PubMed  Google Scholar 

  • Shortt AJ, Secker GA, Munro PM, Khaw PT, Tuft SJ, Daniels JT (2007b) Characterization of the limbal epithelial stem cell niche: novel imaging techniques permit in vivo observation and targeted biopsy of limbal epithelial stem cells. Stem Cells 25(6):1402–1409. doi:10.1634/stemcells.2006-0580

    PubMed  Google Scholar 

  • Shortt AJ, Tuft SJ, Daniels JT (2011) Corneal stem cells in the eye clinic. Br Med Bull 100(1):209–225. doi:10.1093/bmb/ldr041

    PubMed  Google Scholar 

  • Sivak JM, West-Mays JA, Yee A, Williams T, Fini ME (2004) Transcription factors Pax6 and AP-2 alpha interact to coordinate corneal epithelial repair by controlling expression of matrix metalloproteinase gelatinase B. Mol Cell Biol 24(1):245–257

    PubMed  CAS  Google Scholar 

  • Smith RS, Sundberg JP, John SWM (2002) The anterior segment and ocular adnexae. In: Smith RS (ed) Systematic evaluation of the mouse eye. Anatomy, pathology and biomethods. CRC Press, Boca Raton, FL, pp 1–23

    Google Scholar 

  • Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M, Kroon-Veenboer C, Barker N, Klein AM, van Rheenen J, Simons BD, Clevers H (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143(1):134–144. doi:10.1016/j.cell.2010.09.016

    PubMed  CAS  Google Scholar 

  • Stepp MA, Zhu L, Sheppard D, Cranfill RL (1995) Localized distribution of α9 integrin in the cornea and changes in expression during corneal epithelial cell differentiation. J Histochem Cytochem 43(4):353–362

    PubMed  CAS  Google Scholar 

  • Suzuki K, Saito J, Yanai R, Yamada N, Chikama T, Seki K, Nishida T (2003) Cell-matrix, and cell-cell interactions during corneal epithelial wound healing. Prog Retin Eye Res 22(2):113–133

    PubMed  CAS  Google Scholar 

  • Takacs L, Toth E, Berta A, Vereb G (2009) Stem cells of the adult cornea: from cytometric markers to therapeutic applications. Cytometry Part A 75A(1):54–66

    Google Scholar 

  • Tani H, Morris RJ, Kaur P (2000) Enrichment for murine keratinocyte stem cells based on cell surface phenotype. Proc Natl Acad Sci USA 97(20):10960–10965. doi:10.1073/pnas.97.20.10960

    PubMed  CAS  Google Scholar 

  • Tanifuji-Terai N, Terai K, Hayashi Y, Chikama TI, Kao WWY (2006) Expression of keratin 12 and maturation of corneal epithelium during development and postnatal growth. Invest Ophthalmol Vis Sci 47(2):545–551

    PubMed  Google Scholar 

  • Thoft RA, Friend J (1983) The X, Y, Z hypothesis of corneal epithelial maintenance. Invest Ophthalmol Vis Sci 24(10):1442–1443

    PubMed  CAS  Google Scholar 

  • Tian H, Biehs B, Warming S, Leong K, Rangell L, Klein O, de Sauvage F (2011) A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478(7368):255–259. doi:10.1038/nature10408

    PubMed  CAS  Google Scholar 

  • Townsend W (1991) The limbal palisades of Vogt. Trans Am Ophthalmol Soc 89:721–756

    PubMed  CAS  Google Scholar 

  • Tseng SCG (1989) Concept and application of limbal stem cells. Eye 3:141–157

    PubMed  Google Scholar 

  • Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, Fuchs E (2004) Defining the epithelial stem cell niche in skin. Science 303(5656):359–363

    PubMed  CAS  Google Scholar 

  • Turner HC, Budak MT, Akinci MAM, Wolosin JM (2007) Comparative analysis of human conjunctival and corneal epithelial gene expression with oligonucleotide microarrays. Invest Ophthalmol Vis Sci 48(5):2050–2061. doi:10.1167/iovs.06-0998

    PubMed  Google Scholar 

  • Umemoto T, Yamato M, Nishida K, Yang J, Tano Y, Okano T (2006) Limbal epithelial side-population cells have stem cell-like properties, including quiescent state. Stem Cells 24(1):86–94. doi:10.1634/stemcells.2005-0064

    PubMed  Google Scholar 

  • Van der Lugt NMT, Domen J, Linders K, Vanroon M, Robanusmaandag E, Teriele H, Vandervalk M, Deschamps J, Sofroniew M, Vanlohuizen M, Berns A (1994) Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the Bmi-1 protooncogene. Genes Dev 8(7):757–769. doi:10.1101/gad.8.7.757

    PubMed  Google Scholar 

  • Vantrappen L, Geboes K, Missotten L, Maudgal PC, Desmet V (1985) Lymphocytes and Langerhans cells in the normal human cornea. Invest Ophthalmol Vis Sci 26(2):220–225

    PubMed  CAS  Google Scholar 

  • Wiley L, Sundarraj N, Sun TT, Thoft RA (1991) Regional heterogeneity in human corneal and limbal epithelia—an immunohistochemical evaluation. Invest Ophthalmol Vis Sci 32(3):594–602

    PubMed  CAS  Google Scholar 

  • Wilson SE, Mohan RR, Ambrosio R, Hong JW, Lee JS (2001) The corneal wound healing response: cytokine-mediated interaction of the epithelium, stroma, and inflammatory cells. Prog Retin Eye Res 20(5):625–637

    PubMed  CAS  Google Scholar 

  • Wilson SE, Netto M, Ambrosio R (2003) Corneal cells: chatty in development, homeostasis, wound healing, and disease. Am J Ophthalmol 136(3):530–536

    PubMed  Google Scholar 

  • Wolosin JM, Xiong XL, Schutte M, Stegman Z, Tieng A (2000) Stem cells and differentiation stages in the limbo-corneal epithelium. Prog Retin Eye Res 19(2):223–255. doi:10.1016/s1350-9462(99)00005-1

    PubMed  CAS  Google Scholar 

  • Yan KS, Chia LA, Li XN, Ootani A, Su J, Lee JY, Su N, Luo YL, Heilshorn SC, Amieva MR, Sangiorgi E, Capecchi MR, Kuo CJ (2012) The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proc Natl Acad Sci USA 109(2):466–471. doi:10.1073/pnas.1118857109

    PubMed  CAS  Google Scholar 

  • Yang A, McKeon F (2000) P63 and p73: P53 mimics, menaces and more. Nat Rev Mol Cell Biol 1(3):199–207. doi:10.1038/35043127

    PubMed  CAS  Google Scholar 

  • Yang AN, Kaghad M, Wang YM, Gillett E, Fleming MD, Dotsch V, Andrews NC, Caput D, McKeon F (1998) p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell 2(3):305–316. doi:10.1016/s1097-2765(00)80275-0

    PubMed  CAS  Google Scholar 

  • Yoshida S, Shimmura S, Kawakita T, Miyashita H, Den S, Shimazaki J, Tsubota K (2006) Cytokeratin 15 can be used to identify the limbal phenotype in normal and diseased ocular surfaces. Invest Ophthalmol Vis Sci 47(11):4780–4786

    PubMed  Google Scholar 

  • Yu BD, Mukhopadhyay A, Wong C (2008) Skin and hair: models for exploring organ regeneration. Hum Mol Genet 17:R54–R59. doi:10.1093/hmg/ddn086

    PubMed  CAS  Google Scholar 

  • Zhang W, Zhao J, Chen L, Urbanowicz MM, Nagasaki T (2008) Abnormal epithelial homeostasis in the cornea of mice with a destrin deletion. Mol Vis 14:1929–1939

    PubMed  CAS  Google Scholar 

  • Zheng TY, Xu JJ (2008) Age-related changes of human limbus on in vivo confocal microscopy. Cornea 27(7):782–786

    PubMed  Google Scholar 

  • Zhou MY, Li XM, Lavker RM (2006) Transcriptional profiling of enriched populations of stem cells versus transient amplifying cells—a comparison of limbal and corneal epithelial basal cells. J Biol Chem 281(28):19600–19609. doi:10.1074/jbc.M600777200

    PubMed  CAS  Google Scholar 

  • Zieske JD (2004) Corneal development associated with eyelid opening. Int J Dev Biol 48(8–9):903–911. doi:10.1387/ijdb.041860jz

    PubMed  Google Scholar 

  • Zieske JD, Bukusoglu G, Yankauckas MA, Wasson ME, Keutmann HT (1992) α-Enolase is restricted to basal cells of stratified squamous epithelium. Dev Biol 151(1):18–26. doi:10.1016/0012-1606(92)90209-y

    PubMed  CAS  Google Scholar 

  • Zieske JD, Francesconi CM, Guo XQ (2004) Cell cycle regulators at the ocular surface. Exp Eye Res 78(3):447–456. doi:10.1016/s0014-4835(03)00205-7

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ronnie Grant for assistance with illustrations, Dr Alan W. Flake and Molecular Therapy for permission to reproduce images shown in Fig. 19.4e, f and Dr Takayuki Nagasaki and Molecular Vision for permission to reproduce images shown in Figs. 19.4c,d and 19.7o,p. We also thank Developmental Dynamics, BMC Developmental Biology, Investigative Ophthalmology & Vision Science and Molecular Vision for permission to reproduce our own previously published images included in Figs 19.4 and 19.7. We are grateful to the Wellcome Trust, Medical Research Council, Biotechnology and Biological Sciences Research Council, Fight for Sight (UK), the RS MacDonald Charitable Trust and the Royal College of Surgeons of Edinburgh for support for our own research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. West .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mort, R.L. et al. (2012). Stem Cells and Corneal Epithelial Maintenance: Insights from the Mouse and Other Animal Models. In: Kubiak, J. (eds) Mouse Development. Results and Problems in Cell Differentiation, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30406-4_19

Download citation

Publish with us

Policies and ethics