Skip to main content

Shock Wave Lithotripsy in the Year 2012

  • Chapter
  • First Online:

Abstract

The introduction of new lithotripters increased problems of shock wave application. Recent studies concerning mechanisms of stone disintegration, shock wave focussing, coupling and application have appeared that may address some of these problems. Moreover, manufacturers have introduced new devices with significant modifications.

The theory of dynamic squeezing offers new insight in stone fragmentation. Manufacturers have modified sources to either enlarge focal zone or offer different focal sizes. Efficacy of ESWL can be increased by lowering the pulse rate to 60–80 SW/min and by ramping the SW energy. With the water cushion, quality of coupling has become a critical factor depending on amount, viscosity and temperature of coupling gel. Fluoroscopy time can be reduced by automated localization or the use of optical and acoustic tracking systems.

The trend of more pre-ESWL auxiliary measures has stopped due to increased use of alternative endourological procedures. The rate of ureteral stones is still high (18–41%), representing a stable figure. Re-treatment rate varies considerably from 6% to 49% between the different devices. Electro-hydraulic systems offer lower re-ESWL rates (6–21%) compared to electromagnetic (11–49%) and piezoelectric (20–45%). Three-month stone-free rates vary between 64% and 89%. However, it has been also shown that the experience of the operator with the device plays an important role on the outcome. The best EQmod reported was 0.69 using an electromagnetic device at a very experienced centre, whereas it usually ranges between 0.49 and 0.60. This means that maximally 50–60% of the patients can be treated successfully by a single in situ session of ESWL. The existing literature does not support the dogma that the Dornier HM3 is still by far the best device in the world,

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arrabal-Polo MB, Arrabal-Martin M, Palao-Yago F, Milan-Ortiz JL, Zuluaga-Gomez A (2011) Value of focal applied energy quotient in treatment of ureteral lithiasis with shock waves. Urol Res; Dec 4 Epub ahead of print

    Google Scholar 

  • Bergsdorf T, Thüroff S, Chaussy C (2005) The isolated perfused kidney: an in vitro test system for evaluation of renal tissue by high-energy shockwave sources. J Endourol 19:883–888

    Article  PubMed  Google Scholar 

  • Bergsdorf T, Chaussy C, Thüroff S (2008) Energy coupling in shock wave lithotripsy – the impact of coupling quality on disintegration efficacy. J Endourol 22(Suppl):A161

    Google Scholar 

  • Bhagat SK, Chacko NK, Kekre NS, Gopalakrishnan G, Antonisamy B, Devasia A (2007) Is there a role for tamsulosin in shock wave lithotripsy for renal and ureteral calculi. J Urol 177:2185–2188

    Article  PubMed  CAS  Google Scholar 

  • Bierkens AF, Hendrikx AJM, De Kort VJW, De Reyke T, Bruynen CAH, Bouve ER, Beek TVB, Vos O, Berkel HV (1992) Efficacy of second generation lithotriptors: a multicenter comparative study of 2,206 shock wave lithotripsy treatments with the Siemens Lithostar, Dornier HM 4, Wolf Piezolith 2300, Direx Tripter X and Breakstone lithotripters. J Urol 148:1052–1056

    PubMed  CAS  Google Scholar 

  • Bohris C (2010) Quality of coupling in SWL significantly affect the disintegration capacity – how to achieve good coupling with ultrasound gel. In: Chaussy C, Haupt G, Jocham D, Köhrmann KU (eds) Therapeutic energy applications in urology II. Standards and recent developments. Thieme, Stuttgart – New York, pp 61–64

    Google Scholar 

  • Bohris C, Bayer T, Lechner C (2003) Hit/miss monitoring of SWL by spectral Doppler ultrasound. Ultrasound Med Biol 29:705–712

    Article  PubMed  Google Scholar 

  • Bohris C, Bayer T, Gumpiner R (2010a) Ultrasound monitoring of kidney stone extracorporeal shockwave lithotripsy with an external transducer:does fatty tissue cause image distortions that affect stone comminution? J Endourol 24:81–88

    Article  PubMed  Google Scholar 

  • Bohris C, Bayer T, Gumpinger R (2010b) Ultrasound monitoring of kidney stone shock wave lithotripsy with an external transducer: does fatty tissue cause image distrosions that affect stone comminution? J Endourol 24:81–88

    Article  PubMed  Google Scholar 

  • Bohris C, Roosen A, Dickmann M, Hocaoglu Y, Sandner S, Bader M, Stief CG, Walther S (2012) Monitoring the coupling of the lithotripter head with skin during routine shock wave lithotripsy with a surveillance camera. J Urol 187:157–163

    Article  PubMed  Google Scholar 

  • Chacko J, Moore M, Sankey N, Chandhoke PS (2006) Does slower treatment rate impact the efficacy of shock wave lithotripsy for solitary kidney or ureteral stones. J Urol 175:1370–1373

    Article  PubMed  Google Scholar 

  • Chan SL, Stothers A, Perler Z, Taylor W, Sullivan LD (1995) A prospective trial comparing the efficacy of the modified Dornier HM3 and MFL 5000 lithotriptors for solitary real calculi. J Urol 153:1794–1797

    Article  PubMed  CAS  Google Scholar 

  • Chaussy C, Brendel W, Schmiedt E (1980) Extracorporeally induced destruction of kidney stones by shock waves. Lancet 2:1265–1268

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Kreider W, Brayman AA, Bailey R, Matula TJ (2011) Blood vessel deformations on microsecond time scales by ultrasonic cavitation. Phys Rev Lett 106:34301

    Article  Google Scholar 

  • Clark DL, Connors BA, Handa RK, Evan AP (2011) Pretreatment with low-energy shock waves reduces the renal oxidative stress and inflammation caused by high-energy shock wave lithotripsy. Urol Res 39:437–442

    Article  PubMed  CAS  Google Scholar 

  • Cleveland RO, Sapozhnikov OA (2005) Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy. J Acoust Soc Am 118:2667–2676

    Article  PubMed  Google Scholar 

  • Cleveland RO, Anglade R, Babayan RK (2004) Effect of stone motion on in vitro comminution efficiency of a Storz Modulith SLX. J Endourol 18:629–633

    Article  PubMed  Google Scholar 

  • Crum LA (1988) Cavitation microjets as a contributory mechanism for renal calculi disintegration in SWL. J Urol 140:1587–1590

    PubMed  CAS  Google Scholar 

  • Danuser H, Müller R, Descoeundres B, Dobry E, Studer UE (2007) shock wave lithotripsy of lower calyx calculi: how much is treatment outcome influenced by the anatomy of the collecting system? Eur Urol 52:539–546

    Article  PubMed  Google Scholar 

  • Dasgupta R, Hegarty N, Thomas K (2009) Emergency shock wave lithotripsy for ureteric stones. Curr Opin Urol 19:196–199

    Article  PubMed  Google Scholar 

  • Davenport K, Minervini A, Keoghane S, Parkin J, Keeley FX (2006) Does rate matter? The results of a randomized controlled trial of 60 versus 120 shocks per minute for shock wave lithotripsy of renal calculi. J Urol 176:2055–2058

    Article  PubMed  Google Scholar 

  • De Sio M, Autorino R, Quarto G, Mordente S, Giugliano F, Di Giacomo F, Neri F, Quattrone C, Sorrentino D, De Domenico R, D’Armiento M (2007) A new transportable shock-wave lithotripsy machine for managing urinary stones: a single centre experience with a dual-focus lithotriptor. BJU Int 100:1137–1141

    PubMed  Google Scholar 

  • Delius M, Brendel W (1988) A mechanism of gallstone destruction by extracorporeal shock waves. Naturwissenschaften 75:200–201

    Article  PubMed  CAS  Google Scholar 

  • Denstedt JD, Clayman RV, Preminger GM (1990) Efficiency quotient as a means of comparing lithotripters (abstract). J Endourol 4 (Suppl):S100

    Google Scholar 

  • Drach GW, Dretler SP, Fair WR, Finlayson B, Gillenwater J, Griffith D, Lingeman J, Newman D (1986) Report of the United States cooperative study of shock wave lithotripsy. J Urol 135:1127–1133

    PubMed  CAS  Google Scholar 

  • Duryea AP, Roberts WW, Cain CA, Faerber GJ, Hollingsworth JM, Wolf JS Jr., Hall TL (2011) Rapid extracorporeal stone erosion. J Endourol 25 (Suppl):A9 (abstract BR02–12)

    Google Scholar 

  • Eisenmenger W (2001) The mechanisms of stone ­fragmentation in SWL. Ultrasound Med Biol 27:683–693

    Article  PubMed  CAS  Google Scholar 

  • Eisenmenger W, Du XX, Tang C, Zhao S, Wang Y, Rong F, Dai D, Guan M, Qi A (2002) The first clinical results of ‘wide focus and low-pressure’ SWL. Ultrasound Med Biol 28:769–774

    Article  PubMed  CAS  Google Scholar 

  • Evan AP, McAteer JA, Connors BA, Pishchalnikov YA, Handa RK, Blomgren P, Willis LR, Williams JC Jr, Lingeman JE, Gao S (2007a) Independent assessment of a wide-focus, low-pressure electromagnetic lithotripter: absence of renal bioeffects in the pig. BJU Int 101:382–388

    Article  PubMed  Google Scholar 

  • Evan AP, McAteer JA, Connors BA, Blomgren PM, Lingeman JE (2007b) Renal injury in SWL is significantly reduced by slowing the rate of shock wave delivery. BJU Int 100:624–627

    Article  PubMed  Google Scholar 

  • Falahatkar S, Khosropanah I, Vajary AD, Bateni ZH, Khosropanah D, Allahkhah A (2011) Is there a role for tamulsosin after shock wave lithotripsy in the treatment of renal and ureteral calculi. J Endourol 25:495–498

    Article  PubMed  Google Scholar 

  • Freund JB, Colonius T, Evan AP (2007) A cumulative shear mechanism for tissue damage initiation in shock-wave lithotripsy. Ultrasound Med Biol 33:1495–1503

    Article  PubMed  Google Scholar 

  • Fuchs G, Miller K, Rassweiler J, Eisenberger F (1985) shock wave lithotripsy: one-year experience with the Dornier lithotripter. Eur Urol 11:145–149

    PubMed  CAS  Google Scholar 

  • Georgiev MI, Ormanov DI, Vassilev VD, Dimitrov PD, Mladenov VD, Popov EP, Simeonov PP, Panchev PK (2011) Efficacy of tamsulosin oral controlled absorption system after shock wave lithotripsy to treat urolithiasis. Urology 78:1023–1026

    Article  PubMed  Google Scholar 

  • Gillitzer R, Neisius A, Wöllner J, Hampel C, Brenner W, Bonilla AA, Thüroff J (2009) Low-frequency shock wave lithotripsy improves pelvic stone disintegration in a pig model. BJU Int 103:1284–1288

    Article  PubMed  Google Scholar 

  • Ginter S, Burkhardt M, Vallon P (2010) Richard wolf: the piezoelectric SWL – more than 20 years of clinical success worldwide. In: Chaussy C, Haupt G, Jocham D, Köhrmann KU (eds) Therapeutic energy applications in urology II. Standards and recent developments. Thieme, Stuttgart – New York, pp 87–92

    Google Scholar 

  • Goktas C, Akca O, Horuz R, Gokhan O, Albayrak S, Sarica K (2011) SWL in lower calyceal calculi: evaluation of the treatment results in children and adults. Urology 78:1402–1406

    Article  PubMed  Google Scholar 

  • Granz B, Köhler G (1992) What makes a shock wave efficient in lithotripsy. J Stone Dis 4:123–128

    PubMed  CAS  Google Scholar 

  • Greenstein A, Matzkin H (1999) Does the rate of extracorporeal shock wave delivery affect stone fragmentation? Urology 54:430–432

    Article  PubMed  CAS  Google Scholar 

  • Gulur DM, Philip J (2011) Semen quality after extracorporeal shockwave lithotripsy for the management of lower ureteric stones: a review of the literature. BJU Int 108:1321–1323

    Article  PubMed  Google Scholar 

  • Handa RK, McAteer JA, Evan AP, Connors BA, Pishchalnikov YA, Gao S (2009) Assessment of renal injury with a clinical dual head lithotripter delivering 240 shock waves per minute. J Urol 181:884–889

    Article  PubMed  Google Scholar 

  • Hartung A, Schwarze W (2010) LithoSpace by AST GmbH. In: Chaussy C, Haupt G, Jocham D, Köhrmann KU (eds) Therapeutic energy applications in urology II. Standards and recent developments. Thieme, Stuttgart – New York, pp 53–56

    Google Scholar 

  • Hofsäß S, Rheinwald M (2010) Dornier MedTech: update on products for urology. In: Chaussy C, Haupt G, Jocham D, Köhrmann KU (eds) Therapeutic energy applications in urology II. Standards and recent developments. Thieme, Stuttgart – New York, pp 57–69

    Google Scholar 

  • Inoue H, Kamphausen T, Bajanowski T, Trübner K (2011) Massive retroperitoneal haemorrhage after extraxorporeal shock wave lithotripsy (SWL). Int J Legal Med 125:75–79

    Article  PubMed  Google Scholar 

  • Jain A, Shah TK (2007) Effect of air bubbles in the coupling medium on efficacy of shock wave lithotripsy. Eur Urol 51:1680–1687

    Article  PubMed  Google Scholar 

  • Kato Y, Yamaguchi S, Hori J, Okuyama M, Kakizaki H (2006) Improvement of stone comminution by slow delivery rate of shock waves in extracorporeal lithotripsy. Int J Urol 13:1461–1465

    Article  PubMed  Google Scholar 

  • Knoll T, Alken P (2011) Beyond SWL: new concepts for definitive stone removal. World J Urol 29:703–704

    Article  PubMed  Google Scholar 

  • Knoll T, Fritsche HM, Rassweiler J (2011) Medical and economic aspects of shock wave lithotripsy. Aktuelle Urol 42:363–367

    Article  PubMed  CAS  Google Scholar 

  • Koehrmann KU, Back W, Bensemann J, Florian J, Weber W, Kahmann F, Rassweiler J, Alken P (1994) The isolated perfused kidney of the pig: new model to evaluate shockwave induced lesions. J Endourol 8:105–110

    Article  Google Scholar 

  • Koo V, Beattie I, Voung M (2010) Improved cost-effectiveness and efficiency with a slower shock wave delivery rate. BJU Int 105:692–696

    Article  PubMed  Google Scholar 

  • Krambeck AE, Rule AD, Li X, Bergstrahl EJ, Gettman M, Lieske C (2011) Shock wave lithotripsy is not predictive of hypertension among community stone formers at long-term followup. J Urol 185:164–169

    Article  PubMed  Google Scholar 

  • Lalak N, Moussa SA, Smith G, Tolley DA (2002a) The Dornier compact delta lithotripter: the first 500 renal calculi. J Endourol 16:3–7

    Article  PubMed  Google Scholar 

  • Lalak N, Moussa SA, Smith G, Tolley DA (2002b) The Dornier compact delta lithotripter: the first 150 ureteral calculi. J Endourol 16:645–648

    Article  PubMed  Google Scholar 

  • Lambert EH, Walsh R, Moreno MW, Gupta M (2010) Effect of escalating versus fixed voltage treatment on stone comminution and renal injury during shock wave lithotripsy: a prospective randomized trial. J Urol 183:580–584

    Article  PubMed  Google Scholar 

  • Lanski M, Ulucan N, Burnes L (2010) Lithoskop: discover the future of urology today. In: Chaussy C, Haupt G, Jocham D, Köhrmann KU (eds) Therapeutic energy applications in urology II. Standards and recent developments. Thieme, Stuttgart – New York, pp 71–77

    Google Scholar 

  • Leighton TG, Fedele F, Coleman AJ, McCarthy C, Ryves S, Hurrell AM, De Stefano A, White PR (2008) A passive acoustic device for real-time monitoring of the efficacy of shockwave lithotripsy treatment. Ultrasound Med Biol 34:1651–1665

    Article  PubMed  CAS  Google Scholar 

  • Lingeman JE, McAteer JA, Gnessin E, Evan AP (2009) Shock wave lithotripsy: advances in technology and technique. Nat Rev Urol 6:660–670

    Article  PubMed  Google Scholar 

  • Lokhandwalla M, Sturtevant B (2000) Fracture mechanics model of stone comminution in SWL and implications for tissue damage. Phys Med Biol 45:1923–1940

    Article  PubMed  CAS  Google Scholar 

  • Lorber G, Duvdevani M, Gofrit ON, Latke A, Katz R, Landau E, Meretyk S, Pode D, Shapiro A (2010) What happened to shockwave lithotripsy during the past 22 years? a single-center experience. J Endourol 24:609–614

    Article  PubMed  Google Scholar 

  • Madbouly K, El-Tiraifi AM, Seida M, El-Faqiu SR, Atasi R, Talic RF (2005) Slow versus fast shock wave lithotripsy rate for urolithisasis: a prospective randomized study. J Urol 173:127–130

    Article  PubMed  Google Scholar 

  • Maker V, Iayke J (2004) Gastrointestinal injury secondary to extracorporeal shock wvae lithotripsy: a review of the literature since its inception. J Am Coll Surg 198:128–135

    Article  PubMed  Google Scholar 

  • Matlaga BR, McAteer JA, Connors BA, Handa RK, Evan AP, Williams JC, Lingeman JE, Willis LR (2008) Potential for cavitation-mediated tissue damage in shockwave lithotripsy. J Endourol 22:121–126

    Article  PubMed  Google Scholar 

  • McAteer JA, Evan AP, Williams JC Jr, Lingeman JE (2009) Treatment protocols to reduce renal injury during shockwave lithotripsy. Curr Opin Urol 19:192–195

    Article  PubMed  Google Scholar 

  • Neisius DA (2006) Clinical experience with the latest generation piezoelectric extracorporeal shockwave lihotripsy system. Eur Kidney Urol Dis 4:1–3

    Google Scholar 

  • Neucks JS, Pishchalnikov YA, Zancanaro AJ, von der Haar JN, Williams JC, McAteer JA (2008) Improved acoustic coupling for shock wave lithotripsy. Urol Res 36:61–66

    Article  PubMed  Google Scholar 

  • Ng CF, Mc Loman L, Thompson TJ, Tolley DA (2004) Comparison of 2 generations of piezoelectric lithtriptors using matched pair analysis. J Urol 172:1887–1891

    Article  PubMed  CAS  Google Scholar 

  • Pace KT, Ghiculete D, Harju M, Honey RJ (2005) Shock wave lithotripsy at 60 or 120 shocks per minute: a randomized, double-blind trial. J Urol 174:595–599

    Article  PubMed  Google Scholar 

  • Partheymüller P (2010) Sonolth i-sys: the new standard in lithotripy. In: Chaussy C, Haupt G, Jocham D, Köhrmann KU (eds) Therapeutic energy applications in urology II. Standards and recent developments. Thieme, Stuttgart – New York, pp 65–70

    Google Scholar 

  • Paterson RF, Lifshitz DA, Lingeman JE, Evan AP, Connors BA, Fineberg NS, Williams JC, McAteer JA (2002) Stone fragmentation during shock wave lithotripsy is improved by slowing the shock wave rate: studies with a new animal model. J Urol 168:2211–2215

    Article  PubMed  Google Scholar 

  • Pearle MS, Lingeman JE, Leveillee R, Kuo P, Preminger GM, Nadler RB, Macaluso J, Monga M, Kumar U, Dushinsky J, Albala DM, Wolf JS Jr, Assimos D, Fabrizio M, Munch LC, Nakada SY, Auge B, Honey J, Ogan K, Pattaras J, McDougall EM, Averch TD, Turk T, Pietrow P, Watkins S (2008) Prospective randomized trial shock wave lithotripsy and ureteroscopy for lower pole caliceal calculi 1 cm or less. J Urol 179(Suppl):S69–S73

    Article  PubMed  Google Scholar 

  • Pishalnikov YA, Sapozhnikov OA, Williams JC Jr, Evan AP, McAteer RO, Cleveland RO, Colonius T, Bailey MR, Crum LA (2003) Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shock waves. J Endourol 17:435–446

    Article  Google Scholar 

  • Pishchalnikov YA, Sapozhnikov OA, Bailey MR, Pishchalnikova IV, Williams JC Jr, McAteer JA (2005) Cavitation selectively reduces the negative-pressure phase of lithotripter shock waves. Acoust Res Lett Online 6:280–286

    Article  PubMed  Google Scholar 

  • Pishchalnikov YA, McAteer R, VonderHaar J, Pishchalnikova IV, Williams JC, Evan AP (2006a) Detection of significant variation in acoustic output of an electromagnetic lithotripter. J Urol 176:2294–2298

    Article  PubMed  Google Scholar 

  • Pishchalnikov YA, Neucks JS, Von der Haar RJ, Pishchalnikova IV, Williams JC, McAteer JA (2006b) Air pockets trapped during routine coupling in dry head lithotripsy can significantly decrease the delivery of shock wave energy. J Urol 176:2706–2710

    Article  PubMed  Google Scholar 

  • Pishchalnikov YA, McAteer JA, Williams JC Jr, Pishchalnikova I, vonDerHaar RJ (2006c) Why stones break better at slow shock wave rate than at fast rate: in vitro study with a research electrohydraulic lithotripter. J Endourol 20:537–541

    Article  PubMed  Google Scholar 

  • Rassweiler J, Gumpinger R, Mayer R, Kohl H, Schmidt A, Eisenberger F (1987) Extracorporeal piezoelectric lithotripsy using the Wolf-lithotripter versus low energy lithotripsy with modified Dornier HM3: a cooperative study. World J Urol 5:218–224

    Article  Google Scholar 

  • Rassweiler J, Köhrmann U, Heine G, Back W, Wess O, Alken P (1990) Modulith SL 10/20 – experimental introduction and first clinical experience with a new interdisciplinary lithotriptor. Eur Urol 18:237–241

    PubMed  CAS  Google Scholar 

  • Rassweiler J, Fuchs GJ, Eisenmenger W, Brümmer F, Bräuner T, Staudenaus J, Hülser DF, Eisenberger F (1991) shock wave lithotripsy. In: Eisenberger F, Miller K, Rassweiler J (eds) Stone therapy in urology. Thieme, Stuttgart, Nex York, pp 29–82

    Google Scholar 

  • Rassweiler J, Henkel TO, Joyce AD, Köhrmann KU, Manning M, Alken P (1992a) shock wave lithotripsy of ureteric stones with the Modulith SL20. Br J Urol 70:594–599

    Article  PubMed  CAS  Google Scholar 

  • Rassweiler J, Köhrmann KU, Alken P (1992b) SWL, including imaging. Curr Opin Urol 2:291–299

    Article  Google Scholar 

  • Rassweiler J, Köhrmann KU, Back W, Fröhner S, Raab M, Weber A, Kahmann F, Marlinghaus E, Jünemann KP, Alken P (1993) Experimental basis of shockwave-induced renal trauma in the model of the canine kidney. World J Urol 11:43–53

    Article  PubMed  CAS  Google Scholar 

  • Rassweiler JJ, Renner C, Chaussy C, Thüroff S (2001) Treatment of renal stones by shock wave lithotripsy. Eur Urol 39:187–199

    Article  PubMed  CAS  Google Scholar 

  • Rassweiler JJ, Tailly GG, Chaussy C (2005) Progress in lithotriptor technology. EAU Update Series 3:17–36

    Article  Google Scholar 

  • Rassweiler JJ, Bergsdorf T, Bohris C, Burkhardt M, Burnes L, Forssmann B, Meinert C, Partheymüller P, Vallon P, Wess O, Williger J, Chaussy C (2010) Consensus: shock wave technology and application – state of the art in 2010. In: Chaussy C, Haupt G, Jocham D, Köhrmann KU (eds) Therapeutic energy applications in urology II. Standards and recent developments. Thieme, Stuttgart – New York, pp 37–52

    Google Scholar 

  • Rassweiler JJ, Knoll T, Köhrmann KU, McAteer JA, Linegman JE, Cleveland RO, Bailey MR, Chaussy C (2011) Shock wave technology and application – an update. Eur Urol 59:784–796

    Article  PubMed  Google Scholar 

  • Sapozhnikov OA, Maxwell AD, MacConaghy B, Bailey MR (2007) A mechanisrtic analysis of stone fracture in lithotripsy. J Acoust Soc Am 121:1190–1202

    Article  PubMed  Google Scholar 

  • Seemann O, Rassweiler J, Chvapil M, Alken P, Drach GW (1993) The effect of single shock waves on the vascular system of artificially perfused rabbit kidneys. J Stone Dis 5:172–178

    PubMed  CAS  Google Scholar 

  • Sfoungaristos S, Polimeros N, Kavouras A, Perimenis P (2011) Stenting or not prior to extracorporeal shockwave lithotripsy for ureteral stones? Results of a prospective randomized study. Int Urol Nephrol; Sep 30 Epub ahead of print

    Google Scholar 

  • Sheir KZ, El-Diasty TA, Ismail AM (2005) Evaluation of a synchronous twin-pulse technique for shock wave lithotripsy: the first prospective clinical study. BJU Int 95:389–393

    Article  PubMed  Google Scholar 

  • Skolarikos A, Alivizatos G, De la Rosette J (2006) shock wave lithotripsy 25 years later: complications and their prevention. Eur Urol 50:981–990

    Article  PubMed  Google Scholar 

  • Sorensen C, Chandhoke P, Moore M, Wolf C, Sarram A (2002) Comparison of intravenous sedation versus general anesthesia on the efficacy of the Doli 50 lithotriptor. J Urol 168:35–37

    Article  PubMed  Google Scholar 

  • Tailly GG (2002) In situ SWL of ureteral stones: comparison between an electrohydraulic and an electromagnetic shock wave source. J Endourol 16:209–214

    Article  PubMed  Google Scholar 

  • Tailly GG, Baert JA, Hente KR, Tailly TO (2008) Twenty years of single center experience in SWL 1987–2007: an evaluation of 3079 patients. J Endourol 22:2211–2222

    Article  PubMed  Google Scholar 

  • Tiselius HG (2008) How efficient is extracorporeal shockwave lithotripsy with modern lithotripters for removal of ureteral stones. J Endourol 22:249–255

    Article  PubMed  Google Scholar 

  • Wang R, Faerber GJ, Roberts WW, Morris DS, Wolf JS Jr (2009) Single-center North American experience with wolf piezolith 3000 in management of urinary calculi. Urology 73:958–963

    Article  PubMed  Google Scholar 

  • Weizer AZ, Zhong P, Preminger GM (2007) New concepts in shock wave lithotripsy. Urol Clin North Am 34:375–382

    Article  PubMed  Google Scholar 

  • Wess O (2010) Storz medical – shock wave technology for medival applications. In: Chaussy C, Haupt G, Jocham D, Köhrmann KU (eds) Therapeutic energy applications in urology II. Standards and recent developments. Thieme, Stuttgart – New York, pp 78–81

    Google Scholar 

  • Wiksel H, Kinn AC (1995) Implications of cavitation phenomena for shot intervals in shock wave lithotripsy. BJU Int 75:720–723

    Article  Google Scholar 

  • Willis LR, Evan AP, Connors BA, Handa RK, Blomgren PM, Lingeman JE (2006) Prevention of lithotripsy-induced renal injury by pretreating kidneys with low-energy shock waves. J Am Soc Nephrol 17:663–667

    Article  PubMed  Google Scholar 

  • Yilmaz E, Batislam E, Basar M, Tuglu D, Mert C, Basar H (2005) Optimal frequency in shock wave lithotripsy: prospective randomized study. Urology 66:1160–1164

    Article  PubMed  Google Scholar 

  • Zehnder P, Roth B, Birkhäuser F, Schneider S, Schnutz R, Thalmann GN, Studer UE (2011) A prospective randomized trial comparing the modified HM3 with the Modulith SLX-F2 lithotripter. Eur Urol 59:637–644

    Article  PubMed  Google Scholar 

  • Zheng S, Liu LR, Yuan HC, Wei Q (2010) Tamulsosin as adjunctive treatment after shockwave lithotripsy in patients with upper urinary tract stones: a systematic review and meta-analysis. Scand J Urol Nephrol 44:425–432

    Article  PubMed  CAS  Google Scholar 

  • Zhong P, Xi XF, Zhu SL, Cocks FH, Preminger GM (1999) Recent developments in SWL physics research. J Endourol 13:611–617

    Article  PubMed  CAS  Google Scholar 

  • Zhong P, Zhou Y, Zhu S (2002) Dynamics of bubble oscillation in contrained media and mechanisms of vessel rupture. Ultrasound Med Biol 28:661–671

    Article  PubMed  Google Scholar 

  • Zhou Y, Cocks FH, Preminger GM, Zhong P (2004) Innovation in shock wave lithotripsy technology: updates in experimental studies. J Urol 172:1892–1898

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens J. Rassweiler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rassweiler, J.J., Fritsche, HM., Tailly, G., Klein, J., Laguna, P., Chaussy, C. (2013). Shock Wave Lithotripsy in the Year 2012. In: Knoll, T., Pearle, M. (eds) Clinical Management of Urolithiasis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28732-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28732-9_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28731-2

  • Online ISBN: 978-3-642-28732-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics