Skip to main content

Roles of Cytochrome P450 in Metabolism of Ethanol and Carcinogens

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1032))

Abstract

Cytochrome P450 (P450) enzymes are involved in the metabolism of carcinogens, as well as drugs, steroids, vitamins, and other classes of chemicals. P450s also oxidize ethanol, in particular P450 2E1. P450 2E1 oxidizes ethanol to acetaldehyde and then to acetic acid, roles also played by alcohol and aldehyde dehydrogenases. The role of P450 2E1 in cancer is complex in that P450 2E1 is also induced by ethanol, P450 2E1 is involved in the bioactivation and detoxication of a number of chemical carcinogens, and ethanol is an inhibitor of P450 2E1. Contrary to some literature, P450 2E1 expression and induction itself does not cause global oxidative stress in vivo, as demonstrated in studies using isoniazid treatment and gene deletion studies with rats and mice. However, a major fraction of P450 2E1 is localized in liver mitochondria instead of the endoplasmic reticulum, and studies with site-directed rat P450 2E1 mutants and natural human P450 2E1 N-terminal variants have shown that P450 2E1 localized in mitochondria is catalytically active and more proficient in producing reactive oxygen species and damage. The role of the mitochondrial oxidative stress in ethanol toxicity is still under investigation, as is the mechanism of altered electron transport to P450s that localize inside mitochondria instead of their typical endoplasmic reticulum environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anandatheerthavarada HK, Addya S, Mullick J, Avadhani NG (1998) Interaction of adrenodoxin with P4501A1 and its truncated form P450MT2 through different domains: differential modulation of enzyme activities. Biochemistry 37:1150–1160

    Article  CAS  PubMed  Google Scholar 

  2. Anandatheerthavarada HK, Amuthan G, Biswas G, Robin MA, Murali R, Waterman MR, Avadhani NG (2001) Evolutionarily divergent electron donor proteins interact with P450MT2 through the same helical domain but different contact points. EMBO J 20:2394–2403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Avadhani NG, Sangar MC, Bansal S, Bajpai P (2011) Bimodal targeting of cytochrome P450s to endoplasmic reticulum and mitochondria: the concept of chimeric signals. FEBS J 278:4218–4229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Backer JM, Weinstein IB (1980) Mitochondrial DNA is a major cellular target for a dihydrodiol-epoxide derivative of benzo[a]pyrene. Science 209:297–299

    Article  CAS  PubMed  Google Scholar 

  5. Bajpai P, Sangar MC, Singh S, Tang W, Bansal S, Chowdhury G, Cheng Q, Fang JK, Martin MV, Guengerich FP, Avadhani NG (2013) Metabolism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by mitochondrion-targeted cytochrome P450 2D6: implications in Parkinson disease. J Biol Chem 288:4436–4451

    Article  CAS  PubMed  Google Scholar 

  6. Bajpai P, Srinivasan S, Ghosh J, Nagy LD, Wei S, Guengerich FP, Avadhani NG (2014) Targeting of splice variants of human cytochrome P450 2C8 (CYP2C8) to mitochondria and their role in arachidonic acid metabolism and respiratory dysfunction. J Biol Chem 289:29614–29630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Bansal S, Liu CP, Sepuri NB, Anandatheerthavarada HK, Selvaraj V, Hoek J, Milne GL, Guengerich FP, Avadhani NG (2010) Mitochondria-targeted cytochrome P450 2E1 induces oxidative damage and augments alcohol-mediated oxidative stress. J Biol Chem 285:24609–24619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Bansal S, Anandatheerthavarada HK, Prabu GK, Milne GL, Martin MV, Guengerich FP, Avadhani NG (2013) Human cytochrome P450 2E1 mutations that alter mitochondrial targeting efficiency and susceptibility to ethanol-induced toxicity in cellular models. J Biol Chem 288:12627–12644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Bansal S, Leu AN, Gonzalez FJ, Guengerich FP, Chowdhury AR, Anandatheerthavarada HK, Avadhani NG (2014) Mitochondrial targeting of cytochrome P450 (CYP) 1B1 and its role in polycyclic aromatic hydrocarbon-induced mitochondrial dysfunction. J Biol Chem 289:9936–9951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Bauer KH (1928) Mutationstheorie der Geschwulstenstehung. Springer, Berlin

    Google Scholar 

  11. Bell LC, Guengerich FP (1997) Oxidation kinetics of ethanol by human cytochrome P450 2E1. Rate-limiting product release accounts for effects of isotopic hydrogen substitution and cytochrome b5 on steady-state kinetics. J Biol Chem 272:29643–29651

    Article  CAS  PubMed  Google Scholar 

  12. Bell-Parikh LC, Guengerich FP (1999) Kinetics of cytochrome P450 2E1-catalyzed oxidation of ethanol to acetic acid via acetaldehyde. J Biol Chem 274:23833–23840

    Article  CAS  PubMed  Google Scholar 

  13. Bhagwat SV, Biswas G, Anandatheerthavarada HK, Addya S, Pandak W, Avadhani NG (1999) Dual targeting property of the N-terminal signal sequence of P4501A1. Targeting of heterologous proteins to endoplasmic reticulum and mitochondria. J Biol Chem 274:24014–24022

    Article  CAS  PubMed  Google Scholar 

  14. Bradford BU, Seed CB, Handler JA, Forman DT, Thurman RG (1993) Evidence that catalase is a major pathway of ethanol oxidation in vivo: dose-response studies in deer mice using methanol as a selective substrate. Arch Biochem Biophys 303:172–176

    Article  CAS  PubMed  Google Scholar 

  15. Castonguay A, Rivenson A, Trushin N, Reinhardt J, Spathopoulos S, Weiss CJ, Reiss B, Hecht SS (1984) Effects of chronic ethanol consumption on the metabolism and carcinogenicity of N´-nitrosonornicotine in F344 rats. Cancer Res 44:2285–2290

    CAS  PubMed  Google Scholar 

  16. Cederbaum AI (2006) Cytochrome P450 2E1-dependent oxidant stress and upregulation of anti-oxidant defense in liver cells. J Gastroenterol Hepatol 21(Suppl 3):S22–S25

    Article  CAS  PubMed  Google Scholar 

  17. Chowdhury G, Calcutt MW, Nagy LD, Guengerich FP (2012) Oxidation of methyl and ethyl nitrosamines by cytochrome P450 2E1 and 2B1. Biochemistry 51:9995–10007

    Article  CAS  PubMed  Google Scholar 

  18. Ortiz de Montellano, PR (ed) (n.d.) Cytochrome P450: Structure, Mechanism, and Biochemistry, 4th edn. Springer, New York

    Google Scholar 

  19. Dong MS, Yamazaki H, Guo Z, Guengerich FP (1996) Recombinant human cytochrome P450 1A2 and an N-terminal-truncated form: construction, purification, aggregation properties, and interactions with flavodoxin, ferredoxin, and NADPH-cytochrome P450 reductase. Arch Biochem Biophys 327:11–19

    Article  CAS  PubMed  Google Scholar 

  20. Dostalek M, Brooks JD, Hardy KD, Milne GL, Moore MM, Sharma S, Morrow JD, Guengerich FP (2007) In vivo oxidative damage in rats is associated with barbiturate response but not other cytochrome P450 inducers. Mol Pharmacol 72:1419–1424

    Article  CAS  PubMed  Google Scholar 

  21. Dostalek M, Hardy KD, Milne GL, Morrow JD, Chen C, Gonzalez FJ, Gu J, Ding X, Johnson DA, Johnson JA, Martin MV, Guengerich FP (2008) Development of oxidative stress by cytochrome P450 induction in rodents is selective for barbiturates and related to loss of pyridine nucleotide-dependent protective systems. J Biol Chem 283:17147–17157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Ekström G, Ingelman-Sundberg M (1989) Rat liver microsomal NADPH-supported oxidase activity and lipid peroxidation dependent on ethanol-inducible cytochrome P-450 (P-450IIE1). Biochem Pharmacol 38:1313–1319

    Article  PubMed  Google Scholar 

  23. Enright JM, Toomey MB, Sato SY, Temple SE, Allen JR, Fujiwara R, Kramlinger VM, Nagy LD, Johnson KM, Xiao Y, How MJ, Johnson SL, Roberts NW, Kefalov VJ, Guengerich FP, Corbo JC (2015) Cyp27c1 red-shifts the spectral sensitivity of photoreceptors by converting vitamin A1 into A2. Curr Biol 25:3048–3057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Evans DC, Watt AP, Nicoll-Griffith DA, Baillie TA (2004) Drug-protein adducts: an industry perspective on minimizing the potential for drug bioactivation in drug discovery and development. Chem Res Toxicol 17:3–16

    Article  CAS  PubMed  Google Scholar 

  25. Gonzalez FJ (2007) The 2006 Bernard B Brodie Award Lecture. Cyp2e1. Drug Metab Dispos 35:1–8

    Article  CAS  PubMed  Google Scholar 

  26. Gonzalez FJ, Kimura S (2003) Study of P450 function using gene knockout and transgenic mice. Arch Biochem Biophys 409:153–158

    Article  CAS  PubMed  Google Scholar 

  27. Greenzaid P, Luz Z, Samuel D (1967a) A nuclear magnetic resonance study of the reversible hydration of aliphatic aldehydes and ketones. I. oxygen-17 and protonspectra and equilibrium constants. J Am Chem Soc 89:749–755

    Article  CAS  Google Scholar 

  28. Greenzaid P, Luz Z, Samuel D (1967b) A nuclear magnetic resonance study of the reversible hydration of aliphatic aldehydes and ketones. II. The acid-catalyzed oxygen exchange of acetaldehyde. J Am Chem Soc 89:756–759

    Article  CAS  Google Scholar 

  29. Guengerich FP (2015) Human cytochrome P450 enzymes. In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism, and biochemistry, 4th edn. Springer, New York, pp 523–785

    Google Scholar 

  30. Guengerich FP, Cheng Q (2011) Orphans in the human cytochrome P450 superfamily: approaches to discovering functions and relevance in pharmacology. Pharmacol Rev 63:684–699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Guengerich FP, Kim DH, Iwasaki M (1991) Role of human cytochrome P-450 IIE1 in the oxidation of many low molecular weight cancer suspects. Chem Res Toxicol 4:168–179

    Article  CAS  PubMed  Google Scholar 

  32. Guengerich FP, Bell LC, Okazaki O (1995) Interpretations of cytochrome P450 mechanisms from kinetic studies. Biochimie 77:573–580

    Article  CAS  PubMed  Google Scholar 

  33. Guengerich FP, Sohl CD, Chowdhury G (2011) Multi-step oxidations catalyzed by cytochrome P450 enzymes: Processive vs. distributive kinetics and the issue of carbonyl oxidation in chemical mechanisms. Arch Biochem Biophys 507:126–134

    Article  CAS  PubMed  Google Scholar 

  34. Hartman JH, Martin HC, Caro AA, Pearce AR, Miller GP (2015) Subcellular localization of rat CYP2E1 impacts metabolic efficiency toward common substrates. Toxicology 338:47–58

    Article  CAS  PubMed  Google Scholar 

  35. Johnson KA (2003) Introduction to kinetic analysis of enzyme systems. In: Johnson KA (ed) Kinetic analysis of macromolecules. A practical approach. Oxford University Press, Oxford, pp 1–18

    Google Scholar 

  36. Johnson WW, Guengerich FP (1997) Reaction of aflatoxin B1 exo-8,9-epoxide with DNA: Kinetic analysis of covalent binding and DNA-induced hydrolysis. Proc Natl Acad Sci U S A 94:6121–6125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Jollow DJ, Mitchell JR, Potter WZ, Davis DC, Gillette JR, Brodie BB (1973) Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J Pharmacol Exp Ther 187:195–202

    CAS  PubMed  Google Scholar 

  38. Kadiiska MB, Gladen BC, Baird DD, Germolec D, Graham LB, Parker CE, Nyska A, Wachsman JT, Ames BN, Basu S, Brot N, Fitzgerald GA, Floyd RA, George M, Heinecke JW, Hatch GE, Hensley K, Lawson JA, Marnett LJ, Morrow JD, Murray DM, Plastaras J, Roberts, L. J., 2nd, Rokach J, Shigenaga MK, Sohal RS, Sun J, Tice RR, Van Thiel DH, Wellner D, Walter PB, Tomer KB, Mason RP, Barrett JC (2005a) Biomarkers of oxidative stress study II: are oxidation products of lipids, proteins, and DNA markers of CCl4 poisoning? Free Radic Biol Med 38:698–710

    Article  CAS  PubMed  Google Scholar 

  39. Kadiiska MB, Gladen BC, Baird DD, Graham LB, Parker CE, Ames BN, Basu S, Fitzgerald GA, Lawson JA, Marnett LJ, Morrow JD, Murray DM, Plastaras J, Roberts, L. J., 2nd, Rokach J, Shigenaga MK, Sun J, Walter PB, Tomer KB, Barrett JC, Mason RP (2005b) Biomarkers of oxidative stress study III. Effects of the nonsteroidal anti-inflammatory agents indomethacin and meclofenamic acid on measurements of oxidative products of lipids in CCl4 poisoning. Free Radic Biol Med 38:711–718

    Article  CAS  PubMed  Google Scholar 

  40. Kalyanaraman B, Darley-Usmar V, Davies KJ, Dennery PA, Forman HJ, Grisham MB, Mann GE, Moore K, Roberts, L. J., 2nd, Ischiropoulos H (2012) Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med 52:1–6

    Article  CAS  PubMed  Google Scholar 

  41. Keefer LK, Lijinsky W, Garcia H (1973) Deuterium isotope effect on the carcinogenicity of dimethylnitrosamine in rat liver. J Natl Cancer Inst 51:299–302

    Article  CAS  PubMed  Google Scholar 

  42. Kono H, Bradford BU, Yin M, Sulik KK, Koop DR, Peters JM, Gonzalez FJ, McDonald T, Dikalova A, Kadiiska MB, Mason RP, Thurman RG (1999) CYP2E1 is not involved in early alcohol-induced liver injury. Am J Phys 277:G1259–G1267

    CAS  Google Scholar 

  43. Koop DR, Morgan ET, Tarr GE, Coon MJ (1982) Purification and characterization of a unique isozyme of cytochrome P-450 from liver microsomes of ethanol-treated rabbits. J Biol Chem 257:8472–8480

    CAS  PubMed  Google Scholar 

  44. Kuby SA (1991) A study of enzymes, I, Enzyme catalysis, Kinetics, and substrate binding. CRC Press, Boca Raton

    Google Scholar 

  45. Kunitoh S, Imaoka S, Hiroi T, Yabusaki Y, Monna T, Funae Y (1997) Acetaldehyde as well as ethanol is metabolized by human CYP2E1. J Pharmacol Exp Ther 280:527–532

    CAS  PubMed  Google Scholar 

  46. Lehnerer M, Schulze J, Bernhardt R, Hlavica P (1999) Some properties of mitochondrial adrenodoxin associated with its nonconventional electron donor function toward rabbit liver microsomal cytochrome P450 2B4. Biochem Biophys Res Commun 254:83–87

    Article  CAS  PubMed  Google Scholar 

  47. Lieber CS, DeCarli LM (1970) Hepatic microsomal ethanol oxidizing system: In vitro chracteristics and adaptive properties in vivo. J Biol Chem 245:2505–2512

    CAS  PubMed  Google Scholar 

  48. McCoy GD, Hecht SS, Katayama S, Wynder EL (1981) Differential effect of chronic ethanol consumption on the carcinogenicity of N-nitrosopyrrolidine and N´-nitrosonornicotine in male Syrian golden hamsters. Cancer Res 41:2849–2854

    CAS  PubMed  Google Scholar 

  49. Mico BA, Swagzdis JE, Hu HS-W, Keefer LK, Oldfield NF, Garland WA (1985) Low-dose in vivo pharmacokinetic and deuterium isotope effect studies of N-nitrosodimethylamine in rats. Cancer Res 45:6280–6285

    CAS  PubMed  Google Scholar 

  50. Miller JA (1970) Carcinogenesis by chemicals: an overview. G.H.A. Clowes Memorial Lecture. Cancer Res 30:559–576

    CAS  PubMed  Google Scholar 

  51. Mueller GC, Miller JA (1948) The metabolism of 4-dimethylaminoazobenzene by rat liver homogenates. J Biol Chem 176:535–544

    CAS  PubMed  Google Scholar 

  52. Nebert DW, Nelson DR, Adesnik M, Coon MJ, Estabrook RW, Gonzalez FJ, Guengerich FP, Gunsalus IC, Johnson EF, Kemper B et al (1989) The P450 superfamily: updated listing of all genes and recommended nomenclature for the chromosomal loci. DNA 8:1–13

    Article  CAS  PubMed  Google Scholar 

  53. Niranjan BG, Avadhani NG (1980) Activation of aflatoxin B1 by a mono-oxygenase system localized in rat liver mitochondria. J Biol Chem 255:6575–6578

    CAS  PubMed  Google Scholar 

  54. Niranjan BG, Bhat NK, Avadhani NG (1982) Preferential attack of mitochondrial DNA by aflatoxin B1 during hepatocarcinogenesis. Science 215:73–75

    Article  CAS  PubMed  Google Scholar 

  55. Niranjan BG, Wilson NM, Jefcoate CR, Avadhani NG (1984) Hepatic mitochondrial cytochrome P-450 system: distinctive features of cytochrome P-450 involved in the activation of aflatoxin B1 and benzo[a]pyrene. J Biol Chem 259:12495–12501

    CAS  PubMed  Google Scholar 

  56. Northrop DB (1998) On the meaning of Km and V/K in enzyme kinetics. J Chem Educ 75:1153–1157

    Article  CAS  Google Scholar 

  57. Orme-Johnson WH, Ziegler DM (1965) Alcohol mixed function oxidase activity of mammalian liver micoromes. Biochem Biophys Res Commun 21:78–82

    Article  CAS  PubMed  Google Scholar 

  58. Paolini M, Sapigni E, Hrelia P, Scotti M, Morotti M, Cantelli-Forti G (1991) Wide spectrum detection of precarcinogens in short-term bioassays by simultaneous superinduction of multiple forms of cytochrome P450 isoenzymes. Carcinogenesis 12:759–766

    Article  CAS  PubMed  Google Scholar 

  59. Pechurskaya TA, Harnastai IN, Grabovec IP, Gilep AA, Usanov SA (2007) Adrenodoxin supports reactions catalyzed by microsomal steroidogenic cytochrome P450s. Biochem Biophys Res Commun 353:598–604

    Article  CAS  PubMed  Google Scholar 

  60. Porubsky PR, Meneely KM, Scott EE (2008) Structures of human cytochrome P-450 2E1. Insights into the binding of inhibitors and both small molecular weight and fatty acid substrates. J Biol Chem 283(48):33698–33707

    Article  CAS  Google Scholar 

  61. Porubsky PR, Battaile KP, Scott EE (2010) Human cytochrome P450 2E1 structures with fatty acid analogs reveal a previously unobserved binding mode. J Biol Chem 285(29):22282–22290

    Article  CAS  Google Scholar 

  62. Rashba-Step J, Cederbaum AI (1994) Generation of reactive oxygen intermediates by human liver microsomes in the presence of NADPH or NADH. Mol Pharmacol 45:150–157

    CAS  PubMed  Google Scholar 

  63. Rendic S, Guengerich FP (2012) Contributions of human enzymes in carcinogen metabolism. Chem Res Toxicol 25:1316–1383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Rendic S, Guengerich FP (2015) Survey of human oxidoreductases and cytochrome P450 enzymes involved in the metabolism of xenobiotic and natural chemicals. Chem Res Toxicol 28:38–42

    Article  CAS  PubMed  Google Scholar 

  65. Richardson HL, Stier AR, Borsos-Nachtnebel E (1952) Liver tumor inhibition and adrenal histologic responses in rats to which 3′-methyl-4-dimethylaminoazobenzene and 20-methylcholanthrene were simultaneously administered. Cancer Res 12:356–361

    CAS  PubMed  Google Scholar 

  66. Robin MA, Anandatheerthavarada HK, Fang JK, Cudic M, Otvos L, Avadhani NG (2001) Mitochondrial targeted cytochrome P450 2E1 (P450 MT5) contains an intact N-terminus and requires mitochondrial specific electron transfer proteins for activity. J Biol Chem 276:24680–24689

    Article  CAS  Google Scholar 

  67. Robin MA, Anandatheerthavarada HK, Biswas G, Sepuri NB, Gordon DM, Pain D, Avadhani NG (2002) Bimodal targeting of microsomal CYP2E1 to mitochondria through activation of an N-terminal chimeric signal by cAMP-mediated phosphorylation. J Biol Chem 277:40583–40593

    Article  CAS  Google Scholar 

  68. Ryan DE, Ramanathan L, Iida S, Thomas PE, Haniu M, Shively JE, Lieber CS, Levin W (1985) Characterization of a major form of rat hepatic microsomal cytochrome P-450 induced by isoniazid. J Biol Chem 260:6385–6393

    Google Scholar 

  69. Sakaguchi M, Mihara K, Sato R (1984) Signal recognition particle is required for co-translational insertion of cytochrome P-450 into microsomal membranes. Proc Natl Acad Sci U S A 81:3361–3364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Sangar MC, Anandatheerthavarada HK, Tang W, Prabu SK, Martin MV, Dostalek M, Guengerich FP, Avadhani NG (2009) Human liver mitochondrial cytochrome P450 2D6individual variations and implications in drug metabolism. FEBS J 276:3440–3453

    Article  CAS  PubMed  Google Scholar 

  71. Shayiq, R. M., and Avadhani, N. G. (1989) A phenobarbital inducible hepatic mitochondrial cytochrome P-450 immunochemically related to microsomal P-450b.

    Google Scholar 

  72. Shimada T, Guengerich FP (1989) Evidence for cytochrome P-450NF, the nifedipine oxidase, being the principal enzyme involved in the bioactivation of aflatoxins in human liver. Proc Natl Acad Sci U S A 86:462–465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Shimada T, Iwasaki M, Martin MV, Guengerich FP (1989) Human liver microsomal cytochrome P-450 enzymes involved in the bioactivation of procarcinogens detected by umu gene response in Salmonella typhimurium TA 1535/pSK1002. Cancer Res 49:3218–3228

    CAS  PubMed  Google Scholar 

  74. Shinkyo R, Guengerich FP (2011) Cytochrome P450 7A1 cholesterol 7alpha-hydroxylation: individual reaction steps in the catalytic cycle and rate-limiting ferric iron reduction. J Biol Chem 286:4632–4643

    Google Scholar 

  75. Terelius Y, Norsten-Höög C, Cronholm T, Ingelman-Sundberg M (1991) Acetaldehyde as a substrate for ethanol-inducible cytochrome P450 (CYP2E1). Biochem Biophys Res Commun 179:689–694

    Article  CAS  PubMed  Google Scholar 

  76. Thurman RG, Ley HG, Scholz R (1972) Hepatic microsomal ethanol oxidation. Hydrogen peroxide formation and the role of catalase. Eur J Biochem/FEBS 25:420–430

    Article  CAS  Google Scholar 

  77. Ueng Y-F, Shimada T, Yamazaki H, Guengerich FP (1995) Oxidation of aflatoxin B1 by bacterial recombinant human cytochrome P450 enzymes. Chem Res Toxicol 8:218–225

    Article  CAS  PubMed  Google Scholar 

  78. Van Houten B, Woshner V, Santos JH (2006) Role of mitochondrial DNA in toxic responses to oxidative stress. DNA Repair 5:145–152

    Article  PubMed  Google Scholar 

  79. Walsh C (1979) Enzymatic reaction mechanisms. W. H. Freeman Co, San Francisco, pp 67–71

    Google Scholar 

  80. Wienkers LC, Heath TG (2005) Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov 4:825–833

    Article  CAS  PubMed  Google Scholar 

  81. Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, Peterkin V, Koup JR, Ball SE (2004) Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos 32:1201–1208

    Article  CAS  PubMed  Google Scholar 

  82. Yang CS, Ishizaki H, Lee M, Wade D, Fadel A (1991) Deuterium isotope effect in the interaction of N-nitrosodimethylamine, ethanol, and related compounds with cytochrome P-450IIE1. Chem Res Toxicol 4:408–413

    Article  CAS  PubMed  Google Scholar 

  83. Yin M, Gabele E, Wheeler MD, Connor H, Bradford BU, Dikalova A, Rusyn I, Mason R, Thurman RG (2001) Alcohol-induced free radicals in mice: direct toxicants or signaling molecules? Hepatology 34:935–942

    Article  CAS  PubMed  Google Scholar 

  84. Yun CH, Kim KH, Calcutt MW, Guengerich FP (2005) Kinetic analysis of oxidation of coumarins by human cytochrome P450 2A6. J Biol Chem 280:12279–12291

    Article  CAS  Google Scholar 

  85. American Cancer Society (ACS) (2017) American Cancer Society, Atlanta, GA. https://www.cancer.org/content/dam/cancerorg/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2017/cancer-facts-and-figures-2017.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Peter Guengerich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peter Guengerich, F., Avadhani, N.G. (2018). Roles of Cytochrome P450 in Metabolism of Ethanol and Carcinogens. In: Vasiliou, V., Zakhari, S., Mishra, L., Seitz, H. (eds) Alcohol and Cancer. Advances in Experimental Medicine and Biology, vol 1032. Springer, Cham. https://doi.org/10.1007/978-3-319-98788-0_2

Download citation

Publish with us

Policies and ethics