Skip to main content

The Effects of Alcohol and Aldehyde Dehydrogenases on Disorders of Hematopoiesis

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 815))

Abstract

Hematopoiesis involves the orderly production of millions of blood cells per second from a small number of essential bone marrow cells termed hematopoietic stem cells (HSCs). Ethanol suppresses normal hematopoiesis resulting in leukopenia, anemia, and thrombocytopenia and may also predispose to the development of diseases such as myelodysplasia (MDS) and acute leukemia. Currently the exact mechanisms by which ethanol perturbs hematopoiesis are unclear. The aldehyde dehydrogenase (ALDH) gene family plays a major role in the metabolism of reactive aldehydes derived from ethanol in the liver and other organs. At least one of the ALDH isoforms, ALDH1A1, is expressed at high levels in HSCs in humans, mice, and other organisms. Recent data indicate that ALDH1A1 and possibly other ALDH isoforms may metabolize reactive aldehydes in HSCs and other hematopoietic cells as they do in the liver and elsewhere. In addition, loss of these ALDHs leads to perturbation of a variety of cell processes that may predispose HSCs to disorders in growth and leukemic transformation. From these findings, we suggest a hypothesis that the cytopenias and possible increased risk of MDS and acute leukemia in heavy alcohol users is due to polymorphisms in genes responsible for metabolism of alcohol derived reactive aldehydes and repair of their DNA adducts in HSCs and other hematopoietic cells. In the article, we will summarize the biological properties of hematopoietic cells and diseases related to ethanol consumption, discuss molecular characteristics of ethanol metabolism, and describe a model to explain how ethanol derived reactive aldehydes may promote HSC damage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AML:

Acute myeloid leukemia

CFU:

Colony forming unit

HSC:

Hematopoietic stem cell

MDS:

Myelodysplasia

RBC:

Red blood cell

References

  1. Bianconi E et al (2013) An estimation of the number of cells in the human body. Ann Hum Biol 40(6):463–471

    Article  PubMed  Google Scholar 

  2. Doulatov S, Notta F, Laurenti E, Dick JE (2012) Hematopoiesis: a human perspective. Cell Stem Cell 10(2):120–136

    Article  CAS  PubMed  Google Scholar 

  3. Seita J, Weissman IL (2010) Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med 2(6):640–653

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Urao N, Ushio-Fukai M (2013) Redox regulation of stem/progenitor cells and bone marrow niche. Free Radic Biol Med 54:26–39

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Natelson EA, Pyatt D (2013) Acquired myelodysplasia or myelodysplastic syndrome: clearing the fog. Adv Hematol 2013:309637

    Article  PubMed Central  PubMed  Google Scholar 

  6. Stein EM, Tallman MS (2012) Novel and emerging drugs for acute myeloid leukemia. Curr Cancer Drug Targets 12(5):522–530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. O’Donnell MR (2013) Risk stratification and emerging treatment strategies in acute myeloid leukemia. J Natl Compr Canc Netw 11(5 Suppl):667–669

    PubMed  Google Scholar 

  8. Mathisen MS, Kantarjian H, Thomas D, O’Brien S, Jabbour E (2013) Acute lymphoblastic leukemia in adults: encouraging developments on the way to higher cure rates. Leuk Lymphoma 54(12):2592–2600

    Article  CAS  PubMed  Google Scholar 

  9. Latvala J, Parkkila S, Niemela O (2004) Excess alcohol consumption is common in patients with cytopenia: studies in blood and bone marrow cells. Alcohol Clin Exp Res 28(4):619–624

    Article  PubMed  Google Scholar 

  10. Ballard HS (1980) Alcohol-associated pancytopenia with hypocellular bone marrow. Am J Clin Pathol 73(6):830–834

    CAS  PubMed  Google Scholar 

  11. Budde R, Hellerich U (1995) Alcoholic dyshaematopoiesis: morphological features of alcohol-induced bone marrow damage in biopsy sections compared with aspiration smears. Acta Haematol 94(2):74–77

    Article  CAS  PubMed  Google Scholar 

  12. Wang H, Zhou H, Mahler S, Chervenak R, Wolcott M (2011) Alcohol affects the late differentiation of progenitor B cells. Alcohol Alcohol 46(1):26–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Vrsalovic M, Vrsalovic MM, Presecki AV, Lukac J (2007) Modulating role of alcohol and acetaldehyde on neutrophil and monocyte functions in vitro. J Cardiovasc Pharmacol 50(4):462–465

    Article  CAS  PubMed  Google Scholar 

  14. Prakash O et al (2001) Inhibition of hematopoietic progenitor cell proliferation by ethanol in human immunodeficiency virus type 1 tat-expressing transgenic mice. Alcohol Clin Exp Res 25(3):450–456

    Article  CAS  PubMed  Google Scholar 

  15. Cunningham CC, Bailey SM (2001) Ethanol consumption and liver mitochondria function. Biol Signals Recept 10(3–4):271–282

    Article  CAS  PubMed  Google Scholar 

  16. Samuels DC (2006) Mitochondrial AZT metabolism. IUBMB Life 58(7):403–408

    Article  CAS  PubMed  Google Scholar 

  17. Baarson KA, Snyder CA (1991) Evidence for the disruption of the bone marrow microenvironment by combined exposures to inhaled benzene and ingested ethanol. Arch Toxicol 65(5):414–420

    Article  CAS  PubMed  Google Scholar 

  18. Meagher RC, Sieber F, Spivak JL (1982) Suppression of hematopoietic-progenitor-cell proliferation by ethanol and acetaldehyde. N Engl J Med 307(14):845–849

    Article  CAS  PubMed  Google Scholar 

  19. Cooper GW, Dinowitz H, Cooper B (1984) The effects of administration of ethyl alcohol to mice on megakaryocyte and platelet development. Thromb Haemost 52(1):11–14

    CAS  PubMed  Google Scholar 

  20. Levine RF, Spivak JL, Meagher RC, Sieber F (1986) Effect of ethanol on thrombopoiesis. Br J Haematol 62(2):345–354

    Article  CAS  PubMed  Google Scholar 

  21. Siggins RW et al (2011) Alcohol suppresses the granulopoietic response to pulmonary Streptococcus pneumoniae infection with enhancement of STAT3 signaling. J Immunol 186(7):4306–4313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Raasch CE et al (2010) Acute alcohol intoxication impairs the hematopoietic precursor cell response to pneumococcal pneumonia. Alcohol Clin Exp Res 34(12):2035–2043

    Article  PubMed Central  PubMed  Google Scholar 

  23. Imperia PS, Chikkappa G, Phillips PG (1984) Mechanism of inhibition of granulopoiesis by ethanol. Proc Soc Exp Biol Med 175(2):219–225

    Article  CAS  PubMed  Google Scholar 

  24. Balbo S et al (2012) Time course of DNA adduct formation in peripheral blood granulocytes and lymphocytes after drinking alcohol. Mutagenesis 27(4):485–490

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Latvala J, Parkkila S, Melkko J, Niemela O (2001) Acetaldehyde adducts in blood and bone marrow of patients with ethanol-induced erythrocyte abnormalities. Mol Med 7(6):401–405

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Ido M et al (1996) A case-control study of myelodysplastic syndromes among Japanese men and women. Leuk Res 20(9):727–731

    Article  CAS  PubMed  Google Scholar 

  27. Gorini G et al (2007) Alcohol consumption and risk of leukemia: a multicenter case-control study. Leuk Res 31(3):379–386

    Article  CAS  PubMed  Google Scholar 

  28. Wong O, Harris F, Yiying W, Hua F (2009) A hospital-based case-control study of acute myeloid leukemia in Shanghai: analysis of personal characteristics, lifestyle and environmental risk factors by subtypes of the WHO classification. Regul Toxicol Pharmacol 55(3):340–352

    Article  PubMed  Google Scholar 

  29. Brown LM et al (1992) Alcohol consumption and risk of leukemia, non-Hodgkin’s lymphoma, and multiple myeloma. Leuk Res 16(10):979–984

    Article  CAS  PubMed  Google Scholar 

  30. Crane MM, Keating MJ (1991) Exposure histories in acute nonlymphocytic leukemia patients with a prior preleukemic condition. Cancer 67(8):2211–2214

    Article  CAS  PubMed  Google Scholar 

  31. Heinen MM et al (2013) Alcohol consumption and risk of lymphoid and myeloid neoplasms: results of the Netherlands cohort study. Int J Cancer 133(7):1701–1712

    Article  CAS  PubMed  Google Scholar 

  32. Langevin F, Crossan GP, Rosado IV, Arends MJ, Patel KJ (2011) Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice. Nature 475(7354):53–58

    Article  CAS  PubMed  Google Scholar 

  33. Garaycoechea JI et al (2012) Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function. Nature 489(7417):571–575

    Article  CAS  PubMed  Google Scholar 

  34. Hira A et al (2013) Variant ALDH2 is associated with accelerated progression of bone marrow failure in Japanese Fanconi anemia patients. Blood 122(18):3206–3209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Storms RW et al (1999) Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci U S A 96(16):9118–9123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Gasparetto M et al (2012) Aldehyde dehydrogenases are regulators of hematopoietic stem cell numbers and B-cell development. Exp Hematol 40(4):318–329.e2

    Article  CAS  PubMed  Google Scholar 

  37. Gasparetto M et al (2012) Varying levels of aldehyde dehydrogenase activity in adult murine marrow hematopoietic stem cells are associated with engraftment and cell cycle status. Exp Hematol 40(10):857–866.e5

    Article  CAS  PubMed  Google Scholar 

  38. Levi BP, Yilmaz OH, Duester G, Morrison SJ (2009) Aldehyde dehydrogenase 1a1 is dispensable for stem cell function in the mouse hematopoietic and nervous systems. Blood 113(8):1670–1680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Hernandez-Boluda JC et al (2012) A polymorphism in the XPD gene predisposes to leukemic transformation and new nonmyeloid malignancies in essential thrombocythemia and polycythemia vera. Blood 119(22):5221–5228

    Article  CAS  PubMed  Google Scholar 

  40. Minegishi Y et al (2007) Susceptibility to lung cancer and genetic polymorphisms in the alcohol metabolite-related enzymes alcohol dehydrogenase 3, aldehyde dehydrogenase 2, and cytochrome P450 2E1 in the Japanese population. Cancer 110(2):353–362

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clay Smith M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Smith, C., Gasparetto, M., Jordan, C., Pollyea, D.A., Vasiliou, V. (2015). The Effects of Alcohol and Aldehyde Dehydrogenases on Disorders of Hematopoiesis. In: Vasiliou, V., Zakhari, S., Seitz, H., Hoek, J. (eds) Biological Basis of Alcohol-Induced Cancer. Advances in Experimental Medicine and Biology, vol 815. Springer, Cham. https://doi.org/10.1007/978-3-319-09614-8_20

Download citation

Publish with us

Policies and ethics