Skip to main content

Live Imaging of Bone Cell and Organ Cultures

  • Protocol
  • First Online:
Bone Research Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 816))

Abstract

Over the past two decades there have been unprecedented advances in the capabilities for live cell imaging using light and confocal microscopy. Together with the discovery of green fluorescent protein and its derivatives and the development of a vast array of fluorescent imaging probes and conjugates, it is now possible to image virtually any intracellular or extracellular protein or structure. Traditional static imaging of fixed bone cells and tissues takes a snapshot view of events at a specific time point, but can often miss the dynamic aspects of the events being investigated. This chapter provides an overview of the application of live cell imaging approaches for the study of bone cells and bone organ cultures. Rather than emphasizing technical aspects of the imaging equipment, we have focused on what we consider to be the important principles that are of most practical use for an investigator setting up these techniques in their own laboratory, together with detailed protocols that our laboratory has used for live imaging of bone cell and organ cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faibish, D., Gomes, A., Boivin, G., Binderman, I., and Boskey, A. (2005) Infrared imaging of calcified tissue in bone biopsies from adults with osteomalacia. Bone 36, 6–12.

    Article  PubMed  CAS  Google Scholar 

  2. Huitema, L. F., and Vaandrager, A. B. (2007) What triggers cell-mediated mineralization? Front. Biosci. 12, 2631–2645.

    Article  PubMed  CAS  Google Scholar 

  3. McKee, M. D., Addison, W. N., Kaartinen, M. T. (2005) Hierarchies of extracellular matrix and mineral organization in bone of the craniofacial complex and skeleton. Cells, tissues, organs 181, 176–188.

    Article  PubMed  CAS  Google Scholar 

  4. Murshed, M., Harmey, D., Millan, J. L., McKee, M. D., and Karsenty, G. (2005) Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev. 19, 1093–1104.

    Article  PubMed  CAS  Google Scholar 

  5. Eils, R., and Athale, C. (2003) Computational imaging in cell biology. J. Cell Biol. 161, 477–481.

    Article  PubMed  CAS  Google Scholar 

  6. Kulesa, P. M. (2004) Developmental imaging: Insights into the avian embryo. Birth Defects Res. C. Embryo Today 72, 260–266.

    Article  PubMed  CAS  Google Scholar 

  7. Friedl, P. (2004) Dynamic imaging of cellular interactions with extracellular matrix. Histochem. Cell Biol. 122, 183–190.

    Article  PubMed  CAS  Google Scholar 

  8. Sivakumar, P., Czirok, A., Rongish, B. J., Divakara, V. P., Wang, Y. P., and Dallas, S. L. (2006) New insights into extracellular matrix assembly and reorganization from dynamic imaging of extracellular matrix proteins in living osteoblasts. J. Cell Sci. 119, 1350–1360.

    Article  PubMed  CAS  Google Scholar 

  9. Dallas, S. L., Chen, Q., and Sivakumar, P. (2006) Dynamics of assembly and reorganization of extracellular matrix proteins. Curr. Top. Dev. Biol. 75, 1–24.

    Article  PubMed  CAS  Google Scholar 

  10. Zamir, E. A., Rongish, B. J., and Little, C. D. (2008) The ECM moves during primitive streak formation--computation of ECM versus cellular motion. PLoS biology 6, e247.

    Article  PubMed  Google Scholar 

  11. Frigault, M. M., Lacoste, J., Swift, J. L., Brown, C. M. (2009) Live-cell microscopy - tips and tools. J. Cell Sci. 122, 753–767.

    Google Scholar 

  12. Mavrakis, M., Pourquie. O., and Lecuit, T. (2010) Lighting up developmental mechanisms: how fluorescence imaging heralded a new era. Development 137, 373–387.

    Article  PubMed  CAS  Google Scholar 

  13. Xie, Y., Yin, T., Wiegraebe, W., He, X. C., Miller, D., Stark, D., Perko, K., Alexander, R., Schwartz, J., Grindley, J. C., Park. J,, Haug. J, S., Wunderlich, J. P., Li, H., Zhang, S., Johnson, T., Feldman, R. A., and Li, L. (2009) Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 457, 97–101.

    Google Scholar 

  14. Lo Celso, C., Wu, J. W., Lin, C. P. (2009) In vivo imaging of hematopoietic stem cells and their microenvironment. J. Biophotonics 2, 619–631.

    Article  PubMed  Google Scholar 

  15. Hamilton, N. (2009) Quantification and its applications in fluorescent microscopy imaging. Traffic 10, 951–961.

    Article  PubMed  CAS  Google Scholar 

  16. Sekar, R. B., Periasamy, A. (2003) Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J. Cell Biol. 160, 629–633.

    Article  PubMed  CAS  Google Scholar 

  17. Day, R. N., Schaufele, F. (2005) Imaging molecular interactions in living cells. Mol. Endocrinol. 19, 1675–1686.

    Article  PubMed  CAS  Google Scholar 

  18. Parsons, M., Vojnovic, B.,and Ameer-Beg, S. (2004) Imaging protein-protein interactions in cell motility using fluorescence resonance energy transfer (FRET). Biochem. Soc. Trans. 32, 431–433.

    Article  PubMed  CAS  Google Scholar 

  19. Wiedenmann, J., Oswald, F., Nienhaus, G. U. (2009) Fluorescent proteins for live cell imaging: opportunities, limitations, and challenges. IUBMB life 61, 1029–1042.

    Article  PubMed  CAS  Google Scholar 

  20. Czirok, A., Zamir, E. A., Filla, M. B., Little, C. D., Rongish, B. J. (2006) Extracellular matrix macroassembly dynamics in early vertebrate embryos. Curr. Top. Dev. Biol. 73, 237–258.

    Article  PubMed  CAS  Google Scholar 

  21. Ohashi, T., Kiehart, D. P., Erickson, H. P. (1999) Dynamics and elasticity of the fibronectin matrix in living cell culture visualized by fibronectin-green fluorescent protein. Proc. Natl. Acad. Sci. US 96, 2153–2158.

    Article  CAS  Google Scholar 

  22. Kalajzic, I., Braut, A., Guo, D., Jiang, X., Kronenberg. M, S., Mina, M., Harris, M. A., Harris, S. E., and Rowe, D. W. (2004) Dentin matrix protein 1 expression during osteoblastic differentiation, generation of an osteocyte GFP-transgene. Bone 35, 74–82.

    Google Scholar 

  23. Yang, W., Lu, Y., Kalajzic, I., Guo, D., Harris, M. A., Gluhak-Heinrich, J., Kotha, S., Bonewald, L. F., Feng, J. Q., Rowe, D. W., Turner, C. H., Robling, A. G., and Harris, S. E. (2005) Dentin matrix protein 1 gene cis-regulation: use in osteocytes to characterize local responses to mechanical loading in vitro and in vivo. J. Biol. Chem. 280, 20680–20690.

    Article  PubMed  CAS  Google Scholar 

  24. Ghosh-Choudhury, N., Windle, J. J., Koop, B. A., Harris, M. A., Guerrero, D. L., Wozney, J. M., Mundy, G. R., and Harris, S. E. (1996) Immortalized murine osteoblasts derived from BMP 2-T-antigen expressing transgenic mice. Endocrinology 137, 331–339.

    Article  PubMed  CAS  Google Scholar 

  25. Kalajzic, I., Kalajzic, Z., Kaliterna, M., Gronowicz, G., Clark, S. H., Lichtler, A. C., and Rowe, D. (2002) Use of type I collagen green fluorescent protein transgenes to identify subpopulations of cells at different stages of the osteoblast lineage. J. Bone Miner. Res. 17, 15–25.

    Article  PubMed  CAS  Google Scholar 

  26. Dallas, S. L., Veno, P. A., Rosser, J. L., Barragan-Adjemian, C., Rowe, D. W., Kalajzic, I., and Bonewald, L. F. (2009) Time lapse imaging techniques for comparison of mineralization dynamics in primary murine osteoblasts and the late osteoblast/early osteocyte-like cell line MLO-A5. Cells tissues organs 189, 6–11.

    Article  PubMed  Google Scholar 

  27. Dallas, S. L., Veno, P. A., Bonewald, L. F., Rowe, D. W., and Kalajzic, I. (2007) Dynamic Imaging of Fluorescently Tagged Osteoblast and Osteocyte Populations Integrates Mineralization Dynamics with Osteoblast to Osteocyte Transition. J. Bone Miner. Res. 22(suppl1), S13.

    Google Scholar 

  28. Veno, P. A., Nicolella, D. P., Kalajzic, I., Rowe, D. W., Bonewald, L. F., Dallas, S. L. (2007) Dynamic Imaging in Living Calvaria Reveals the Motile Properties of Osteoblasts and Osteocytes and suggests Heterogeneity of Osteoblasts in Bone. J. Bone Miner. Res. 22 (Suppl.1), S13.

    Google Scholar 

  29. Zamir, E. A., Czirok, A., Rongish, B. J., and Little, C. D. (2005) A digital image-based method for computational tissue fate mapping during early avian morphogenesis. Ann. Biomed. Eng. 33, 854–865.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah L. Dallas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dallas, S.L., Veno, P.A. (2012). Live Imaging of Bone Cell and Organ Cultures. In: Helfrich, M., Ralston, S. (eds) Bone Research Protocols. Methods in Molecular Biology, vol 816. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-415-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-415-5_26

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-414-8

  • Online ISBN: 978-1-61779-415-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics