Skip to main content

Overview of Influenza Viruses

  • Chapter
  • First Online:
Book cover Swine Influenza

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 370))

Abstract

The influenza virus (IV) is still of great importance as it poses an immanent threat to humans and animals. Among the three IV-types (A, B, and C) influenza A viruses are clinically the most important being responsible for severe epidemics in humans and domestic animals. Aerosol droplets transmit the virus that causes a respiratory disease in humans that can lead to severe pneumonia and ultimately death. The high mutation rate combined with the high replication rate allows the virus to rapidly adapt to changes in the environment. Thereby, IV escape the existing immunity and become resistant to drugs targeting the virus. This causes annual epidemics and demands for new compositions of the yearly vaccines. Furthermore, due to the nature of their segmented genome, IV can recombine segments. This can eventually lead to the generation of a virus with the ability to replicate in humans and with novel antigenic properties that can be the cause of a pandemic outbreak. For its propagation the virus binds to the target cells and enters the cell to replicate its genome. Newly produced viral proteins and genomes are packaged at the cell membrane where progeny virions are released. As all viruses IV depends on cellular functions and factors for their own propagation, and therefore intensively interact with the cells. This dependency opens new possibilities for anti-viral strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avalos RT, Yu Z, Nayak DP (1997) Association of influenza virus NP and M1 proteins with cellular cytoskeletal elements in influenza virus-infected cells. J Virol 71:2947–2958

    PubMed  CAS  Google Scholar 

  • Bergmann M, Garcia-Sastre A, Carnero E, Pehamberger H, Wolff K, Palese P, Muster T (2000) Influenza virus NS1 protein counteracts PKR-mediated inhibition of replication. J Virol 74:6203–6206

    Article  PubMed  CAS  Google Scholar 

  • Bottcher E, Matrosovich T, Beyerle M, Klenk HD, Garten W, Matrosovich M (2006) Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J Virol 80:9896–9898

    Article  PubMed  CAS  Google Scholar 

  • Braakman I, Hoover-Litty H, Wagner KR, Helenius A (1991) Folding of influenza hemagglutinin in the endoplasmic reticulum. J Cell Biol 114:401–411

    Article  PubMed  CAS  Google Scholar 

  • Bui M, Whittaker G, Helenius A (1996) Effect of M1 protein and low pH on nuclear transport of influenza virus ribonucleoproteins. J Virol 70:8391–8401

    PubMed  CAS  Google Scholar 

  • Ceriotti A, Colman A (1990) Trimer formation determines the rate of influenza virus haemagglutinin transport in the early stages of secretion in Xenopus oocytes. J Cell Biol 111:409–420

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Helenius J, Braakman I, Helenius A (1995) Cotranslational folding and calnexin binding during glycoprotein synthesis. Proc Natl Acad Sci U S A 92:6229–6233

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Calvo PA, Malide D, Gibbs J, Schubert U, Bacik I, Basta S, O’Neill R, Schickli J, Palese P, Henklein P, Bennink JR, Yewdell JW (2001) A novel influenza A virus mitochondrial protein that induces cell death. Nat Med 7:1306–1312

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Deng G, Li Z, Tian G, Li Y, Jiao P, Zhang L, Liu Z, Webster RG, Yu K (2004) The evolution of H5N1 influenza viruses in ducks in southern China. Proc Natl Acad Sci U S A 101:10452–10457

    Article  PubMed  CAS  Google Scholar 

  • Claas EC, de Jong JC, van Beek R, Rimmelzwaan GF, Osterhaus AD (1998) Human influenza virus A/HongKong/156/97 (H5N1) infection. Vaccine 16:977–978

    Article  PubMed  CAS  Google Scholar 

  • Connor RJ, Kawaoka Y, Webster RG, Paulson JC (1994) Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology 205:17–23

    Article  PubMed  CAS  Google Scholar 

  • Copeland CS, Doms RW, Bolzau EM, Webster RG, Helenius A (1986) Assembly of influenza hemagglutinin trimers and its role in intracellular transport. J Cell Biol 103:1179–1191

    Article  PubMed  CAS  Google Scholar 

  • Cox RJ, Brokstad KA, Ogra P (2004) Influenza virus: immunity and vaccination strategies. Comparison of the immune response to inactivated and live, attenuated influenza vaccines. Scand J Immunol 59:1–15

    Article  PubMed  CAS  Google Scholar 

  • de Jong JC, Claas EC, Osterhaus AD, Webster RG, Lim WL (1997) A pandemic warning? Nature 389:554

    Article  PubMed  CAS  Google Scholar 

  • Dias A, Bouvier D, Crepin T, McCarthy AA, Hart DJ, Baudin F, Cusack S, Ruigrok RW (2009) The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature 458:914–918

    Article  PubMed  CAS  Google Scholar 

  • Digard P, Elton D, Bishop K, Medcalf E, Weeds A, Pope B (1999) Modulation of nuclear localization of the influenza virus nucleoprotein through interaction with actin filaments. J Virol 73:2222–2231

    PubMed  CAS  Google Scholar 

  • Donelan NR, Basler CF, Garcia-Sastre A (2003) A recombinant influenza A virus expressing an RNA-binding-defective NS1 protein induces high levels of beta interferon and is attenuated in mice. J Virol 77:13257–13266

    Article  PubMed  CAS  Google Scholar 

  • Drummer HE, Jackson DC, Brown LE (1993) Modulation of CD4+ T-cell recognition of influenza hemagglutinin by carbohydrate side chains located outside a T-cell determinant. Virology 192:282–289

    Article  PubMed  CAS  Google Scholar 

  • Eierhoff T, Hrincius ER, Rescher U, Ludwig S, Ehrhardt C (2010) The epidermal growth factor receptor (EGFR) promotes uptake of influenza A viruses (IAV) into host cells. PLoS Pathog 6:1–16

    Google Scholar 

  • Falcon AM, Marion RM, Zurcher T, Gomez P, Portela A, Nieto A, Ortin J (2004) Defective RNA replication and late gene expression in temperature-sensitive influenza viruses expressing deleted forms of the NS1 protein. J Virol 78:3880–3888

    Article  PubMed  CAS  Google Scholar 

  • Fischer C, Schroth-Diez B, Herrmann A, Garten W, Klenk HD (1998) Acylation of the influenza hemagglutinin modulates fusion activity. Virology 248:284–294

    Article  PubMed  CAS  Google Scholar 

  • Flick R, Neumann G, Hoffmann E, Neumeier E, Hobom G (1996) Promoter elements in the influenza vRNA terminal structure. RNA 2:1046–1057

    PubMed  CAS  Google Scholar 

  • Fouchier RA, Schneeberger PM, Rozendaal FW, Broekman JM, Kemink SA, Munster V, Kuiken T, Rimmelzwaan GF, Schutten M, Van Doornum GJ, Koch G, Bosman A, Koopmans M, Osterhaus AD (2004) Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci U S A 101:1356–1361

    Article  PubMed  CAS  Google Scholar 

  • Gabriel G, Herwig A, Klenk HD (2008) Interaction of polymerase subunit PB2 and NP with importin alpha1 is a determinant of host range of influenza A virus. PLoS Pathog 4:e11

    Article  PubMed  CAS  Google Scholar 

  • Gack MU, Albrecht RA, Urano T, Inn KS, Huang IC, Carnero E, Farzan M, Inoue S, Jung JU, Garcia-Sastre A (2009) Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe 5:439–449

    Article  PubMed  CAS  Google Scholar 

  • Gallagher P, Henneberry J, Wilson I, Sambrook J, Gething MJ (1988) Addition of carbohydrate side chains at novel sites on influenza virus hemagglutinin can modulate the folding, transport, and activity of the molecule. J Cell Biol 107:2059–2073

    Article  PubMed  CAS  Google Scholar 

  • Gambaryan AS, Marinina VP, Tuzikov AB, Bovin NV, Rudneva IA, Sinitsyn BV, Shilov AA, Matrosovich MN (1998) Effects of host-dependent glycosylation of hemagglutinin on receptor- binding properties on H1N1 human influenza A virus grown in MDCK cells and in embryonated eggs. Virology 247:170–177

    Article  PubMed  CAS  Google Scholar 

  • Gambotto A, Barratt-Boyes SM, de Jong MD, Neumann G, Kawaoka Y (2008) Human infection with highly pathogenic H5N1 influenza virus. Lancet 371:1464–1475

    Article  PubMed  CAS  Google Scholar 

  • Gething MJ, McCammon K, Sambrook J (1986) Expression of wild-type and mutant forms of influenza hemagglutinin: the role of folding in intracellular transport. Cell 46:939–950

    Article  PubMed  CAS  Google Scholar 

  • Gotoh B, Ogasawara T, Toyoda T, Inocencio NM, Hamaguchi M, Nagai Y (1990) An endoprotease homologous to the blood clotting factor X as a determinant of viral tropism in chick embryo. EMBO J 9:4189–4195

    PubMed  CAS  Google Scholar 

  • Gottlieb TA, Gonzalez A, Rizzolo L, Rindler MJ, Adesnik M, Sabatini DD (1986) Sorting and endocytosis of viral glycoproteins in transfected polarized epithelial cells. J Cell Biol 102:1242–1255

    Article  PubMed  CAS  Google Scholar 

  • Hale BG, Randall RE, Ortin J, Jackson D (2008) The multifunctional NS1 protein of influenza A viruses. J Gen Virol 89:2359–2376

    Article  PubMed  CAS  Google Scholar 

  • Hankins RW, Nagata K, Bucher DJ, Popple S, Ishihama A (1989) Monoclonal antibody analysis of influenza virus matrix protein epitopes involved in transcription inhibition. Virus Genes 3:111–126

    Article  PubMed  CAS  Google Scholar 

  • Hatta M, Kawaoka Y (2002) The continued pandemic threat posed by avian influenza viruses in Hong Kong. Trends Microbiol 10:340–344

    Article  PubMed  CAS  Google Scholar 

  • Hebert DN, Foellmer B, Helenius A (1995) Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell 81:425–433

    Article  PubMed  CAS  Google Scholar 

  • Hebert DN, Zhang JX, Chen W, Foellmer B, Helenius A (1997) The number and location of glycans on influenza hemagglutinin determine folding and association with calnexin and calreticulin. J Cell Biol 139:613–623

    Article  PubMed  CAS  Google Scholar 

  • Horimoto T, Kawaoka Y (2001) Pandemic threat posed by avian influenza A viruses. Clin Microbiol Rev 14:129–149

    Article  PubMed  CAS  Google Scholar 

  • Horimoto T, Nakayama K, Smeekens SP, Kawaoka Y (1994) Proprotein-processing endoproteases PC6 and furin both activate hemagglutinin of virulent avian influenza viruses. J Virol 68:6074–6078

    PubMed  CAS  Google Scholar 

  • Huang TS, Palese P, Krystal M (1990) Determination of influenza virus proteins required for genome replication. J Virol 64:5669–5673

    PubMed  CAS  Google Scholar 

  • Hufnagel L, Brockmann D, Geisel T (2004) Forecast and control of epidemics in a globalized world. Proc Natl Acad Sci U S A 101:15124–15129

    Article  PubMed  CAS  Google Scholar 

  • Hurtley SM, Bole DG, Hoover-Litty H, Helenius A, Copeland CS (1989) Interactions of misfolded influenza virus hemagglutinin with binding protein (BiP). J Cell Biol 108:2117–2126

    Article  PubMed  CAS  Google Scholar 

  • Kawaoka Y, Naeve CW, Webster RG (1984) Is virulence of H5N2 influenza viruses in chickens associated with loss of carbohydrate from the hemagglutinin? Virology 139:303–316

    Article  PubMed  CAS  Google Scholar 

  • Kido H, Yokogoshi Y, Sakai K, Tashiro M, Kishino Y, Fukutomi A, Katunuma N (1992) Isolation and characterization of a novel trypsin-like protease found in rat bronchiolar epithelial Clara cells. A possible activator of the viral fusion glycoprotein. J Biol Chem 267:13573–13579

    PubMed  CAS  Google Scholar 

  • Kido H, Sakai K, Kishino Y, Tashiro M (1993) Pulmonary surfactant is a potential endogenous inhibitor of proteolytic activation of Sendai virus and influenza A virus. FEBS Lett 322:115–119

    Article  PubMed  CAS  Google Scholar 

  • Klenk HD, Garten W (1994) Host cell proteases controlling virus pathogenicity. Trends Microbiol 2:39–43

    Article  PubMed  CAS  Google Scholar 

  • Klenk HD, Rott R, Orlich M, Blodorn J (1975) Activation of influenza A viruses by trypsin treatment. Virology 68:426–439

    Article  PubMed  CAS  Google Scholar 

  • Koopmans M, Wilbrink B, Conyn M, Natrop G, van der Nat H, Vennema H, Meijer A, van Steenbergen J, Fouchier R, Osterhaus A, Bosman A (2004) Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. Lancet 363:587–593

    Article  PubMed  Google Scholar 

  • Krug RM, Broni BA, Bouloy M (1979) Are the 5′ ends of influenza viral mRNAs synthesized in vivo donated by host mRNAs? Cell 18:329–334

    Article  PubMed  CAS  Google Scholar 

  • Krug RM, Yuan W, Noah DL, Latham AG (2003) Intracellular warfare between human influenza viruses and human cells: the roles of the viral NS1 protein. Virology 309:181–189

    Article  PubMed  CAS  Google Scholar 

  • Lambrecht B, Schmidt MF (1986) Membrane fusion induced by influenza virus hemagglutinin requires protein bound fatty acids. FEBS Lett 202:127–132

    Article  PubMed  CAS  Google Scholar 

  • Lazarowitz SG, Choppin PW (1975) Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology 68:440–454

    Article  PubMed  CAS  Google Scholar 

  • Li KS, Guan Y, Wang J, Smith GJ, Xu KM, Duan L, Rahardjo AP, Puthavathana P, Buranathai C, Nguyen TD, Estoepangestie AT, Chaisingh A, Auewarakul P, Long HT, Hanh NT, Webby RJ, Poon LL, Chen H, Shortridge KF, Yuen KY, Webster RG, Peiris JS (2004) Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 430:209–213

    Article  PubMed  CAS  Google Scholar 

  • Ludwig S, Pleschka S, Wolff T (1999) A fatal relationship–influenza virus interactions with the host cell. Viral Immunol 12:175–196

    Article  PubMed  CAS  Google Scholar 

  • Ludwig S, Planz O, Pleschka S, Wolff T (2003) Influenza-virus-induced signaling cascades: targets for antiviral therapy? Trends Mol Med 9:46–52

    Article  PubMed  CAS  Google Scholar 

  • Ludwig S, Wolff T, Ehrhardt C, Wurzer WJ, Reinhardt J, Planz O, Pleschka S (2004) MEK inhibition impairs influenza B virus propagation without emergence of resistant variants. FEBS Lett 561:37–43

    Article  PubMed  CAS  Google Scholar 

  • Luo G, Palese P (1992) Genetic analysis of influenza virus. Curr Opin Genet Dev 2:77–81

    Article  PubMed  CAS  Google Scholar 

  • Ma W, Brenner D, Wang Z, Dauber B, Ehrhardt C, Hogner K, Herold S, Ludwig S, Wolff T, Yu K, Richt JA, Planz O, Pleschka S (2010) The NS segment of an H5N1 highly pathogenic avian influenza virus (HPAIV) is sufficient to alter replication efficiency, cell tropism, and host range of an H7N1 HPAIV. J Virol 84:2122–2133

    Article  PubMed  CAS  Google Scholar 

  • Maines TR, Lu XH, Erb SM, Edwards L, Guarner J, Greer PW, Nguyen DC, Szretter KJ, Chen LM, Thawatsupha P, Chittaganpitch M, Waicharoen S, Nguyen DT, Nguyen T, Nguyen HH, Kim JH, Hoang LT, Kang C, Phuong LS, Lim W, Zaki S, Donis RO, Cox NJ, Katz JM, Tumpey TM (2005) Avian influenza (H5N1) viruses isolated from humans in Asia in 2004 exhibit increased virulence in mammals. J Virol 79:11788–11800

    Article  PubMed  CAS  Google Scholar 

  • Marjuki H, Alam MI, Ehrhardt C, Wagner R, Planz O, Klenk HD, Ludwig S, Pleschka S (2006) Membrane accumulation of influenza a virus hemagglutinin triggers nuclear export of the viral genome via PKCalpha mediated activation of ERK signaling. J Biol Chem 16707–16715

    Google Scholar 

  • Marjuki H, Yen HL, Franks J, Webster RG, Pleschka S, Hoffmann E (2007) Higher polymerase activity of a human influenza virus enhances activation of the hemagglutinin-induced Raf/MEK/ERK signal cascade. Virol J 4:134

    Article  PubMed  CAS  Google Scholar 

  • Marjuki H, Gornitzky A, Marathe BM, Ilyushina NA, Aldridge JR, Desai G, Webby RJ, Webster RG (2010) Influenza A virus-induced early activation of ERK and PI3 K mediates V-ATPase-dependent intracellular pH change required for fusion. Cell Microbiol 587–601

    Google Scholar 

  • Matrosovich MN, Matrosovich TY, Gray T, Roberts NA, Klenk HD (2004) Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J Virol 78:12665–12667

    Article  PubMed  CAS  Google Scholar 

  • Mazur I, Anhlan D, Mitzner D, Wixler L, Schubert U, Ludwig S (2008) The proapoptotic influenza A virus protein PB1-F2 regulates viral polymerase activity by interaction with the PB1 protein. Cell Microbiol 10:1140–1152

    Article  PubMed  CAS  Google Scholar 

  • Melikyan GB, Jin H, Lamb RA, Cohen FS (1997) The role of the cytoplasmic tail region of influenza virus hemagglutinin in formation and growth of fusion pores. Virology 235:118–128

    Article  PubMed  CAS  Google Scholar 

  • Mibayashi M, Martinez-Sobrido L, Loo YM, Cardenas WB, Gale M Jr, Garcia-Sastre A (2007) Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus. J Virol 81:514–524

    Article  PubMed  CAS  Google Scholar 

  • Mir-Shekari SY, Ashford DA, Harvey DJ, Dwek RA, Schulze IT (1997) The glycosylation of the influenza A virus hemagglutinin by mammalian cells. A site-specific study. J Biol Chem 272:4027–4036

    Article  PubMed  CAS  Google Scholar 

  • Munk K, Pritzer E, Kretzschmar E, Gutte B, Garten W, Klenk HD (1992) Carbohydrate masking of an antigenic epitope of influenza virus haemagglutinin independent of oligosaccharide size. Glycobiology 2:233–240

    Article  PubMed  CAS  Google Scholar 

  • Naeve CW, Williams D (1990) Fatty acids on the A/Japan/305/57 influenza virus hemagglutinin have a role in membrane fusion. EMBO J 9:3857–3866

    PubMed  CAS  Google Scholar 

  • Nemeroff ME, Barabino SM, Li Y, Keller W, Krug RM (1998) Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3′end formation of cellular pre-mRNAs. Mol Cell 1:991–1000

    Article  PubMed  CAS  Google Scholar 

  • Neumann G, Castrucci MR, Kawaoka Y (1997) Nuclear import and export of influenza virus nucleoprotein. J Virol 71:9690–9700

    PubMed  CAS  Google Scholar 

  • Ohuchi M, Ohuchi R, Feldmann A, Klenk HD (1997a) Regulation of receptor binding affinity of influenza virus hemagglutinin by its carbohydrate moiety. J Virol 71:8377–8384

    CAS  Google Scholar 

  • Ohuchi R, Ohuchi M, Garten W, Klenk HD (1997b) Oligosaccharides in the stem region maintain the influenza virus hemagglutinin in the metastable form required for fusion activity. J Virol 71:3719–3725

    CAS  Google Scholar 

  • Okumura Y, Takahashi E, Yano M, Ohuchi M, Daidoji T, Nakaya T, Bottcher E, Garten W, Klenk HD, Kido H (2010) Novel type II transmembrane serine proteases, MSPL and TMPRSS13, Proteolytically activate membrane fusion activity of the hemagglutinin of highly pathogenic avian influenza viruses and induce their multicycle replication. J Virol 84:5089–5096

    Google Scholar 

  • O’Neill RE, Jaskunas R, Blobel G, Palese P, Moroianu J (1995) Nuclear import of influenza virus RNA can be mediated by viral nucleoprotein and transport factors required for protein import. J Biol Chem 270:22701–22704

    Article  PubMed  Google Scholar 

  • Palese P, Shaw ML (2007) Orthomyxoviridae: the virus and their replication. In: Knipe DM, Howley PM (eds) Fields—Virology, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 1647–1689

    Google Scholar 

  • Paulson J (ed) (1985) Interactions of animal viruses with cell surface receptors, vol 2. Academic Press, Orlando

    Google Scholar 

  • Perez DR, Donis RO (1998) The matrix 1 protein of influenza A virus inhibits the transcriptase activity of a model influenza reporter genome in vivo. Virology 249:52–61

    Article  PubMed  CAS  Google Scholar 

  • Peterson JR, Ora A, Van PN, Helenius A (1995) Transient, lectin-like association of calreticulin with folding intermediates of cellular and viral glycoproteins. Mol Biol Cell 6:1173–1184

    PubMed  CAS  Google Scholar 

  • Philipp HC, Schroth B, Veit M, Krumbiegel M, Herrmann A, Schmidt MF (1995) Assessment of fusogenic properties of influenza virus hemagglutinin deacylated by site-directed mutagenesis and hydroxylamine treatment. Virology 210:20–28

    Article  PubMed  CAS  Google Scholar 

  • Pleschka S, Wolff T, Ehrhardt C, Hobom G, Planz O, Rapp UR, Ludwig S (2001) Influenza virus propagation is impaired by inhibition of the Raf/MEK/ERK signalling cascade. Nat Cell Biol 3:301–305

    Article  PubMed  CAS  Google Scholar 

  • Qian XY, Alonso-Caplen F, Krug RM (1994) Two functional domains of the influenza virus NS1 protein are required for regulation of nuclear export of mRNA. J Virol 68:2433–2441

    PubMed  CAS  Google Scholar 

  • Rindler MJ, Ivanov IE, Plesken H, Rodriguez-Boulan E, Sabatini DD (1984) Viral glycoproteins destined for apical or basolateral plasma membrane domains traverse the same Golgi apparatus during their intracellular transport in doubly infected Madin-Darby canine kidney cells. J Cell Biol 98:1304–1319

    Article  PubMed  CAS  Google Scholar 

  • Robb NC, Smith M, Vreede FT, Fodor E (2009) NS2/NEP protein regulates transcription and replication of the influenza virus RNA genome. J Gen Virol 90:1398–1407

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Boulan E, Paskiet KT, Sabatini DD (1983) Assembly of enveloped viruses in Madin-Darby canine kidney cells: polarized budding from single attached cells and from clusters of cells in suspension. J Cell Biol 96:866–874

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Boulan E, Paskiet KT, Salas PJ, Bard E (1984) Intracellular transport of influenza virus hemagglutinin to the apical surface of Madin-Darby canine kidney cells. J Cell Biol 98:308–319

    Article  PubMed  CAS  Google Scholar 

  • Rott R, Scholtissek C (1970) Specific inhibition of influenza replication by alpha-amanitin. Nature 228:56

    Article  PubMed  CAS  Google Scholar 

  • Rott R, Klenk HD, Nagai Y, Tashiro M (1995) Influenza viruses, cell enzymes, and pathogenicity. Am J Respir Crit Care Med 152:S16–S19

    Article  PubMed  CAS  Google Scholar 

  • Sakai K, Kohri T, Tashiro M, Kishino Y, Kido H (1994) Sendai virus infection changes the subcellular localization of tryptase Clara in rat bronchiolar epithelial cells. Eur Respir J 7:686–692

    Article  PubMed  CAS  Google Scholar 

  • Scheiblauer H, Reinacher M, Tashiro M, Rott R (1992) Interactions between bacteria and influenza A virus in the development of influenza pneumonia. J Infect Dis 166:783–791

    Article  PubMed  CAS  Google Scholar 

  • Schmidt MF (1982) Acylation of viral spike glycoproteins: a feature of enveloped RNA viruses. Virology 116:327–338

    Article  PubMed  CAS  Google Scholar 

  • Schulze IT (1997) Effects of glycosylation on the properties and functions of influenza virus hemagglutinin. J Infect Dis 176(Suppl 1):S24–S28

    Article  PubMed  Google Scholar 

  • Shapiro GI, Krug RM (1988) Influenza virus RNA replication in vitro: synthesis of viral template RNAs and virion RNAs in the absence of an added primer. J Virol 62:2285–2290

    PubMed  CAS  Google Scholar 

  • Shapiro GI, Gurney T Jr, Krug RM (1987) Influenza virus gene expression: control mechanisms at early and late times of infection and nuclear-cytoplasmic transport of virus-specific RNAs. J Virol 61:764–773

    PubMed  CAS  Google Scholar 

  • Simpson DA, Lamb RA (1992) Alterations to influenza virus hemagglutinin cytoplasmic tail modulate virus infectivity. J Virol 66:790–803

    PubMed  CAS  Google Scholar 

  • Steinhauer DA, Wharton SA, Wiley DC, Skehel JJ (1991) Deacylation of the hemagglutinin of influenza A/Aichi/2/68 has no effect on membrane fusion properties. Virology 184:445–448

    Article  PubMed  CAS  Google Scholar 

  • Stieneke-Grober A, Vey M, Angliker H, Shaw E, Thomas G, Roberts C, Klenk HD, Garten W (1992) Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO J 11:2407–2414

    PubMed  CAS  Google Scholar 

  • Subbarao K, Klimov A, Katz J, Regnery H, Lim W, Hall H, Perdue M, Swayne D, Bender C, Huang J, Hemphill M, Rowe T, Shaw M, Xu X, Fukuda K, Cox N (1998) Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science 279:393–396

    Article  PubMed  CAS  Google Scholar 

  • Tashiro M, Ciborowski P, Reinacher M, Pulverer G, Klenk HD, Rott R (1987) Synergistic role of staphylococcal proteases in the induction of influenza virus pathogenicity. Virology 157:421–430

    Article  PubMed  CAS  Google Scholar 

  • Tashiro M, Yokogoshi Y, Tobita K, Seto JT, Rott R, Kido H (1992) Tryptase Clara, an activating protease for Sendai virus in rat lungs, is involved in pneumopathogenicity. J Virol 66:7211–7216

    PubMed  CAS  Google Scholar 

  • Tatu U, Helenius A (1997) Interactions between newly synthesized glycoproteins, calnexin and a network of resident chaperones in the endoplasmic reticulum. J Cell Biol 136:555–565

    Article  PubMed  CAS  Google Scholar 

  • Taubenberger JK, Reid AH, Fanning TG (2000) The 1918 influenza virus: a killer comes into view. Virology 274:241–245

    Article  PubMed  CAS  Google Scholar 

  • Treanor JJ, Snyder MH, London WT, Murphy BR (1989) The B allele of the NS gene of avian influenza viruses, but not the A allele, attenuates a human influenza A virus for squirrel monkeys. Virology 171:1–9

    Article  PubMed  CAS  Google Scholar 

  • Veit M, Kretzschmar E, Kuroda K, Garten W, Schmidt MF, Klenk HD, Rott R (1991) Site-specific mutagenesis identifies three cysteine residues in the cytoplasmic tail as acylation sites of influenza virus hemagglutinin. J Virol 65:2491–2500

    PubMed  CAS  Google Scholar 

  • Wagner R, Matrosovich M, Klenk HD (2002) Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Rev Med Virol 12:159–166

    Article  PubMed  CAS  Google Scholar 

  • Wagner R, Herwig A, Azzouz N, Klenk HD (2005) Acylation-mediated membrane anchoring of avian influenza virus hemagglutinin is essential for fusion pore formation and virus infectivity. J Virol 79:6449–6458

    Article  PubMed  CAS  Google Scholar 

  • Walker JA, Molloy SS, Thomas G, Sakaguchi T, Yoshida T, Chambers TM, Kawaoka Y (1994) Sequence specificity of furin, a proprotein-processing endoprotease, for the hemagglutinin of a virulent avian influenza virus. J Virol 68:1213–1218

    PubMed  CAS  Google Scholar 

  • Wang P, Palese P, O’Neill RE (1997) The NPI-1/NPI-3 (karyopherin alpha) binding site on the influenza a virus nucleoprotein NP is a nonconventional nuclear localization signal. J Virol 71:1850–1856

    PubMed  CAS  Google Scholar 

  • Wang Z, Robb NC, Lenz E, Wolff T, Fodor E, Pleschka S (2010) NS reassortment of an H7-type highly pathogenic avian influenza virus affects its propagation by altering the regulation of viral RNA production and antiviral host response. J Virol 84:11323–11335

    Article  PubMed  CAS  Google Scholar 

  • Webby RJ, Webster RG (2003) Are we ready for pandemic influenza? Science 302:1519–1522

    Article  PubMed  CAS  Google Scholar 

  • Weber F, Kochs G, Gruber S, Haller O (1998) A classical bipartite nuclear localization signal on Thogoto and influenza A virus nucleoproteins. Virology 250:9–18

    Article  PubMed  CAS  Google Scholar 

  • Webster RG (1997a) Influenza virus: transmission between species and relevance to emergence of the next human pandemic. Arch Virol Suppl 13:105–113

    CAS  Google Scholar 

  • Webster RG (1997b) Predictions for future human influenza pandemics. J Infect Dis 176(Suppl 1):S14–S19

    Article  Google Scholar 

  • Webster RG (1999) 1918 Spanish influenza: the secrets remain elusive. Proc Natl Acad Sci U S A 96:1164–1166

    Article  PubMed  CAS  Google Scholar 

  • Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza A viruses. Microbiol Rev 56:152–179

    PubMed  CAS  Google Scholar 

  • Webster RG, Sharp GB, Claas EC (1995) Interspecies transmission of influenza viruses. Am J Respir Crit Care Med 152:S25–S30

    Article  PubMed  CAS  Google Scholar 

  • Wilschut J, McElhaney JE (2005) Influenza. Mosby Elsvier Limited, Spain

    Google Scholar 

  • World Health Organization (2005) Communicable disease surveillance & response (CSR). Avian Influenza. [Online.]

    Google Scholar 

  • Wright PF, Naumann G, Kawaoka Y (2007) Orthomyxoviruses. In: Knipe DM, Howley PM (eds) Fields—virology, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 1691–1740

    Google Scholar 

  • Wurzer WJ, Planz O, Ehrhardt C, Giner M, Silberzahn T, Pleschka S, Ludwig S (2003) Caspase 3 activation is essential for efficient influenza virus propagation. EMBO J 22:2717–2728

    Article  PubMed  CAS  Google Scholar 

  • Wurzer WJ, Ehrhardt C, Pleschka S, Berberich-Siebelt F, Wolff T, Walczak H, Planz O, Ludwig S (2004) NF-kappaB-dependent induction of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas/FasL is crucial for efficient influenza virus propagation. J Biol Chem 279:30931–30937

    Article  PubMed  CAS  Google Scholar 

  • Ye ZP, Pal R, Fox JW, Wagner RR (1987) Functional and antigenic domains of the matrix (M1) protein of influenza A virus. J Virol 61:239–246

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Pleschka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pleschka, S. (2012). Overview of Influenza Viruses. In: Richt, J., Webby, R. (eds) Swine Influenza. Current Topics in Microbiology and Immunology, vol 370. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2012_272

Download citation

Publish with us

Policies and ethics