Skip to main content

Suicidality and Activation of the Kynurenine Pathway of Tryptophan Metabolism

  • Chapter
  • First Online:
Book cover Inflammation-Associated Depression: Evidence, Mechanisms and Implications

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 31))

Abstract

A recent report by the World Health Organization declared suicide to be a major global problem. With more than 800,000 lives lost each year, suicide is calculated to be the 14th leading cause of death around the world. While the biological mechanisms causing suicidal ideation and behavior are not fully understood, increased levels of inflammation, arising from various sources, have been detected in the central nervous system and the peripheral blood of suicidal patients and suicide completers. Inflammation induces the kynurenine pathway of tryptophan metabolism, which generates a range of metabolites with potent effects on neurotransmitter systems as well as on inflammation. Recent evidence indicates that a dysregulation of the enzymes in the kynurenine pathway may be present in suicidal patients, with a resulting imbalance of metabolites that modulate glutamate neurotransmission and neuroinflammation. As the body of research in these areas grows, targeting the kynurenine pathway enzymes and metabolites may provide novel therapeutic opportunities for detection, treatment, and ultimately prevention of suicidal behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization (2014) Preventing suicide: a global imperative. http://apps.who.int/iris/bitstream/10665/131056/1/9789241564779_eng.pdf. Accessed 30 April 2015

  2. Varnik P (2012) Suicide in the world. Int J Environ Res Public Health 9(3):760–771. doi:10.3390/ijerph9030760

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mortality GBD, Causes of Death C (2015) Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the global burden of disease study 2013. Lancet 385(9963):117–171. doi:10.1016/S0140-6736(14)61682-2

  4. Centers for Disease Control and Prevention (2010) Cost of injury reports. https://wisqars.cdc.gov:8443/costT/cost_Part1_Finished.jsp. Accessed 29 Oct 2015

  5. Wasserman D, Rihmer Z, Rujescu D, Sarchiapone M, Sokolowski M, Titelman D, Zalsman G, Zemishlany Z, Carli V, European Psychiatric A (2012) The European Psychiatric Association (EPA) guidance on suicide treatment and prevention. Eur Psychiatry 27(2):129–141. doi:10.1016/j.eurpsy.2011.06.003

    Article  CAS  PubMed  Google Scholar 

  6. Da Cruz D, Pearson A, Saini P, Miles C, While D, Swinson N, Williams A, Shaw J, Appleby L, Kapur N (2011) Emergency department contact prior to suicide in mental health patients. Emerg Med J 28(6):467–471. doi:10.1136/emj.2009.081869

    Article  PubMed  Google Scholar 

  7. Luoma JB, Martin CE, Pearson JL (2002) Contact with mental health and primary care providers before suicide: a review of the evidence. Am J Psychiatry 159(6):909–916

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, Niederehe G, Thase ME, Lavori PW, Lebowitz BD, McGrath PJ, Rosenbaum JF, Sackeim HA, Kupfer DJ, Luther J, Fava M (2006) Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry 163(11):1905–1917. doi:10.1176/ajp.2006.163.11.1905

    Article  PubMed  Google Scholar 

  9. Kennedy SH, Milev R, Giacobbe P, Ramasubbu R, Lam RW, Parikh SV, Patten SB, Ravindran AV, Canadian Network for Mood and Anxiety Treatments (CANMAT) (2009) Clinical guidelines for the management of major depressive disorder in adults. IV. Neurostimulation therapies. J Affect Disord 117(Suppl 1):S44–S53. doi:10.1016/j.jad.2009.06.039

    Google Scholar 

  10. Meltzer HY, Baldessarini RJ (2003) Reducing the risk for suicide in schizophrenia and affective disorders. J Clin Psychiatry 64(9):1122–1129

    Article  PubMed  Google Scholar 

  11. Baldessarini RJ, Tondo L, Davis P, Pompili M, Goodwin FK, Hennen J (2006) Decreased risk of suicides and attempts during long-term lithium treatment: a meta-analytic review. Bipolar Disord 8(5 Pt 2):625–639. doi:10.1111/j.1399-5618.2006.00344.x

    Article  CAS  PubMed  Google Scholar 

  12. Guzzetta F, Tondo L, Centorrino F, Baldessarini RJ (2007) Lithium treatment reduces suicide risk in recurrent major depressive disorder. J Clin Psychiatry 68(3):380–383

    Article  PubMed  Google Scholar 

  13. Fond G, Loundou A, Rabu C, Macgregor A, Lancon C, Brittner M, Micoulaud-Franchi JA, Richieri R, Courtet P, Abbar M, Roger M, Leboyer M, Boyer L (2014) Ketamine administration in depressive disorders: a systematic review and meta-analysis. Psychopharmacology (Berl) 231(18):3663–3676. doi:10.1007/s00213-014-3664-5

    Article  CAS  Google Scholar 

  14. Zarate C, Duman RS, Liu G, Sartori S, Quiroz J, Murck H (2013) New paradigms for treatment-resistant depression. Ann N Y Acad Sci 1292:21–31. doi:10.1111/nyas.12223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hawton K, van Heeringen K (2009) Suicide. Lancet 373(9672):1372–1381, 10.1016/S0140-6736(09)60372-X

    Article  PubMed  Google Scholar 

  16. Roy A, Sarchiopone M, Carli V (2009) Gene-environment interaction and suicidal behavior. J Psychiatr Pract 15(4):282–288. doi:10.1097/01.pra.0000358314.88931.b5

    Article  PubMed  Google Scholar 

  17. McGuffin P, Perroud N, Uher R, Butler A, Aitchison KJ, Craig I, Lewis C, Farmer A (2010) The genetics of affective disorder and suicide. Eur Psychiatry 25(5):275–277. doi:10.1016/j.eurpsy.2009.12.012

    Article  CAS  PubMed  Google Scholar 

  18. Li D, He L (2007) Meta-analysis supports association between serotonin transporter (5-HTT) and suicidal behavior. Mol Psychiatry 12(1):47–54. doi:10.1038/sj.mp.4001890

    Article  PubMed  Google Scholar 

  19. Bellivier F, Chaste P, Malafosse A (2004) Association between the TPH gene A218C polymorphism and suicidal behavior: a meta-analysis. Am J Med Genet B Neuropsychiatr Genet 124B(1):87–91. doi:10.1002/ajmg.b.20015

    Article  PubMed  Google Scholar 

  20. Kang HJ, Kim JM, Lee JY, Kim SY, Bae KY, Kim SW, Shin IS, Kim HR, Shin MG, Yoon JS (2013) BDNF promoter methylation and suicidal behavior in depressive patients. J Affect Disord 151(2):679–685. doi:10.1016/j.jad.2013.08.001

    Article  CAS  PubMed  Google Scholar 

  21. Kim JM, Kang HJ, Bae KY, Kim SW, Shin IS, Kim HR, Shin MG, Yoon JS (2014) Association of BDNF promoter methylation and genotype with suicidal ideation in elderly Koreans. Am J Geriatr Psychiatry 22(10):989–996. doi:10.1016/j.jagp.2014.02.011

    Article  PubMed  Google Scholar 

  22. Lockwood LE, Su S, Youssef NA (2015) The role of epigenetics in depression and suicide: a platform for gene-environment interactions. Psychiatry Res 228(3):235–242. doi:10.1016/j.psychres.2015.05.071

    Article  CAS  PubMed  Google Scholar 

  23. Harris EC, Barraclough B (1997) Suicide as an outcome for mental disorders. A meta-analysis. Br J Psychiatry 170:205–228

    Article  CAS  PubMed  Google Scholar 

  24. David Klonsky E, Kotov R, Bakst S, Rabinowitz J, Bromet EJ (2012) Hopelessness as a predictor of attempted suicide among first admission patients with psychosis: a 10-year cohort study. Suicide Life Threat Behav 42(1):1–10. doi:10.1111/j.1943-278X.2011.00066.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dumais A, Lesage AD, Alda M, Rouleau G, Dumont M, Chawky N, Roy M, Mann JJ, Benkelfat C, Turecki G (2005) Risk factors for suicide completion in major depression: a case-control study of impulsive and aggressive behaviors in men. Am J Psychiatry 162(11):2116–2124. doi:10.1176/appi.ajp.162.11.2116

    Article  CAS  PubMed  Google Scholar 

  26. Perroud N, Baud P, Mouthon D, Courtet P, Malafosse A (2011) Impulsivity, aggression and suicidal behavior in unipolar and bipolar disorders. J Affect Disord 134(1–3):112–118. doi:10.1016/j.jad.2011.05.048

    Article  PubMed  Google Scholar 

  27. Mann JJ (2003) Neurobiology of suicidal behaviour. Nat Rev Neurosci 4(10):819–828. doi:10.1038/nrn1220

    Article  CAS  PubMed  Google Scholar 

  28. Bach H, Arango V (2012) Neuroanatomy of serotonergic abnormalities in suicide. In: Dwivedi Y (ed) The neurobiological basis of suicide. Frontiers in neuroscience. Boca Raton, CRC Press/Taylor & Francis

    Google Scholar 

  29. Leklem JE (1971) Quantitative aspects of tryptophan metabolism in humans and other species: a review. Am J Clin Nutr 24(6):659–672

    CAS  PubMed  Google Scholar 

  30. Dang Y, Dale WE, Brown OR (2000) Comparative effects of oxygen on indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase of the kynurenine pathway. Free Radic Biol Med 28(4):615–624

    Article  CAS  PubMed  Google Scholar 

  31. Gal EM, Sherman AD (1980) L-kynurenine: its synthesis and possible regulatory function in brain. Neurochem Res 5(3):223–239

    Article  CAS  PubMed  Google Scholar 

  32. Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ (2012) Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci 13(7):465–477. doi:10.1038/nrn3257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schwieler L, Larsson MK, Skogh E, Kegel ME, Orhan F, Abdelmoaty S, Finn A, Bhat M, Samuelsson M, Lundberg K, Dahl ML, Sellgren C, Schuppe-Koistinen I, Svensson C, Erhardt S, Engberg G (2015) Increased levels of IL-6 in the cerebrospinal fluid of patients with chronic schizophrenia – significance for activation of the kynurenine pathway. J Psychiatry Neurosci 40(2):126–133

    PubMed  PubMed Central  Google Scholar 

  34. Urata Y, Koga K, Hirota Y, Akiyama I, Izumi G, Takamura M, Nagai M, Harada M, Hirata T, Yoshino O, Kawana K, Fujii T, Osuga Y (2014) IL-1beta increases expression of tryptophan 2,3-dioxygenase and stimulates tryptophan catabolism in endometrioma stromal cells. Am J Reprod Immunol 72(5):496–503. doi:10.1111/aji.12282

    Article  CAS  PubMed  Google Scholar 

  35. Rubin RT (1967) Adrenal cortical activity changes in manic-depressive illness. Influence on intermediary metabolism of tryptophan. Arch Gen Psychiatry 17(6):671–679

    Article  CAS  PubMed  Google Scholar 

  36. Maes M, Leonard BE, Myint AM, Kubera M, Verkerk R (2011) The new ‘5-HT’ hypothesis of depression: cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry 35(3):702–721. doi:10.1016/j.pnpbp.2010.12.017

    Article  CAS  PubMed  Google Scholar 

  37. Asberg M, Traskman L, Thoren P (1976) 5-HIAA in the cerebrospinal fluid. A biochemical suicide predictor? Arch Gen Psychiatry 33(10):1193–1197

    Article  CAS  PubMed  Google Scholar 

  38. Sublette ME, Galfalvy HC, Fuchs D, Lapidus M, Grunebaum MF, Oquendo MA, Mann JJ, Postolache TT (2011) Plasma kynurenine levels are elevated in suicide attempters with major depressive disorder. Brain Behav Immun 25(6):1272–1278. doi:10.1016/j.bbi.2011.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bradley KA, Case JA, Khan O, Ricart T, Hanna A, Alonso CM, Gabbay V (2015) The role of the kynurenine pathway in suicidality in adolescent major depressive disorder. Psychiatry Res 227(2–3):206–212. doi:10.1016/j.psychres.2015.03.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guillemin GJ, Smith DG, Smythe GA, Armati PJ, Brew BJ (2003) Expression of the kynurenine pathway enzymes in human microglia and macrophages. Adv Exp Med Biol 527:105–112

    Article  CAS  PubMed  Google Scholar 

  41. Guillemin GJ, Kerr SJ, Smythe GA, Smith DG, Kapoor V, Armati PJ, Croitoru J, Brew BJ (2001) Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J Neurochem 78(4):842–853

    Article  CAS  PubMed  Google Scholar 

  42. Du F, Schmidt W, Okuno E, Kido R, Kohler C, Schwarcz R (1992) Localization of kynurenine aminotransferase immunoreactivity in the rat hippocampus. J Comp Neurol 321(3):477–487. doi:10.1002/cne.903210313

    Article  CAS  PubMed  Google Scholar 

  43. Wejksza K, Rzeski W, Okuno E, Kandefer-Szerszen M, Albrecht J, Turski WA (2005) Demonstration of kynurenine aminotransferases I and II and characterization of kynurenic acid synthesis in oligodendrocyte cell line (OLN-93). Neurochem Res 30(8):963–968. doi:10.1007/s11064-005-6178-z

    Article  CAS  PubMed  Google Scholar 

  44. Fukui S, Schwarcz R, Rapoport SI, Takada Y, Smith QR (1991) Blood-brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J Neurochem 56(6):2007–2017

    Article  CAS  PubMed  Google Scholar 

  45. Espey MG, Chernyshev ON, Reinhard JF Jr, Namboodiri MA, Colton CA (1997) Activated human microglia produce the excitotoxin quinolinic acid. Neuroreport 8(2):431–434

    Article  CAS  PubMed  Google Scholar 

  46. Heyes MP, Achim CL, Wiley CA, Major EO, Saito K, Markey SP (1996) Human microglia convert l-tryptophan into the neurotoxin quinolinic acid. Biochem J 320(Pt 2):595–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. de Carvalho LP, Bochet P, Rossier J (1996) The endogenous agonist quinolinic acid and the non endogenous homoquinolinic acid discriminate between NMDAR2 receptor subunits. Neurochem Int 28(4):445–452

    Article  PubMed  Google Scholar 

  48. Guillemin GJ (2012) Quinolinic acid, the inescapable neurotoxin. FEBS J 279(8):1356–1365. doi:10.1111/j.1742-4658.2012.08485.x

    Article  CAS  PubMed  Google Scholar 

  49. Gray AL, Hyde TM, Deep-Soboslay A, Kleinman JE, Sodhi MS (2015) Sex differences in glutamate receptor gene expression in major depression and suicide. Mol Psychiatry 20(9):1057–1068. doi:10.1038/mp.2015.91

    Article  CAS  PubMed  Google Scholar 

  50. Guillemin GJ (2012) Quinolinic acid: neurotoxicity. FEBS J 279(8):1355. doi:10.1111/j.1742-4658.2012.08493.x

    Article  CAS  PubMed  Google Scholar 

  51. Goda K, Kishimoto R, Shimizu S, Hamane Y, Ueda M (1996) Quinolinic acid and active oxygens. Possible contribution of active oxygens during cell death in the brain. Adv Exp Med Biol 398:247–254

    Article  CAS  PubMed  Google Scholar 

  52. Stipek S, Stastny F, Platenik J, Crkovska J, Zima T (1997) The effect of quinolinate on rat brain lipid peroxidation is dependent on iron. Neurochem Int 30(2):233–237

    Article  CAS  PubMed  Google Scholar 

  53. Erhardt S, Lim CK, Linderholm KR, Janelidze S, Lindqvist D, Samuelsson M, Lundberg K, Postolache TT, Traskman-Bendz L, Guillemin GJ, Brundin L (2013) Connecting inflammation with glutamate agonism in suicidality. Neuropsychopharmacology 38(5):743–752. doi:10.1038/npp.2012.248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. DiazGranados N, Ibrahim LA, Brutsche NE, Ameli R, Henter ID, Luckenbaugh DA, Machado-Vieira R, Zarate CA Jr (2010) Rapid resolution of suicidal ideation after a single infusion of an N-methyl-D-aspartate antagonist in patients with treatment-resistant major depressive disorder. J Clin Psychiatry 71(12):1605–1611. doi:10.4088/JCP.09m05327blu

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Larkin GL, Beautrais AL (2011) A preliminary naturalistic study of low-dose ketamine for depression and suicide ideation in the emergency department. Int J Neuropsychopharmacol 14(8):1127–1131, 10.1017/S1461145711000629

    Article  CAS  PubMed  Google Scholar 

  56. Price RB, Nock MK, Charney DS, Mathew SJ (2009) Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatment-resistant depression. Biol Psychiatry 66(5):522–526. doi:10.1016/j.biopsych.2009.04.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zarate CA Jr, Brutsche NE, Ibrahim L, Franco-Chaves J, Diazgranados N, Cravchik A, Selter J, Marquardt CA, Liberty V, Luckenbaugh DA (2012) Replication of ketamine’s antidepressant efficacy in bipolar depression: a randomized controlled add-on trial. Biol Psychiatry 71(11):939–946. doi:10.1016/j.biopsych.2011.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ibrahim L, Diazgranados N, Franco-Chaves J, Brutsche N, Henter ID, Kronstein P, Moaddel R, Wainer I, Luckenbaugh DA, Manji HK, Zarate CA Jr (2012) Course of improvement in depressive symptoms to a single intravenous infusion of ketamine vs add-on riluzole: results from a 4-week, double-blind, placebo-controlled study. Neuropsychopharmacology 37(6):1526–1533. doi:10.1038/npp.2011.338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Price RB, Mathew SJ (2015) Does ketamine have anti-suicidal properties? Current status and future directions. CNS Drugs 29(3):181–188. doi:10.1007/s40263-015-0232-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Walker AK, Budac DP, Bisulco S, Lee AW, Smith RA, Beenders B, Kelley KW, Dantzer R (2013) NMDA receptor blockade by ketamine abrogates lipopolysaccharide-induced depressive-like behavior in C57BL/6J mice. Neuropsychopharmacology 38(9):1609–1616. doi:10.1038/npp.2013.71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bay-Richter C, Janelidze S, Hallberg L, Brundin L (2011) Changes in behaviour and cytokine expression upon a peripheral immune challenge. Behav Brain Res 222(1):193–199. doi:10.1016/j.bbr.2011.03.060

    Article  CAS  PubMed  Google Scholar 

  62. O’Connor JC, Lawson MA, Andre C, Moreau M, Lestage J, Castanon N, Kelley KW, Dantzer R (2009) Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry 14(5):511–522. doi:10.1038/sj.mp.4002148

    Article  PubMed  Google Scholar 

  63. Abdallah CG, Sanacora G, Duman RS, Krystal JH (2015) Ketamine and rapid-acting antidepressants: a window into a new neurobiology for mood disorder therapeutics. Annu Rev Med 66:509–523. doi:10.1146/annurev-med-053013-062946

    Article  CAS  PubMed  Google Scholar 

  64. Beck A, Schuyler D, Herman J (1974) Development of suicidal intent scales. The prediction of suicide. The Charles Press, Bowie

    Google Scholar 

  65. Bay-Richter C, Linderholm KR, Lim CK, Samuelsson M, Traskman-Bendz L, Guillemin GJ, Erhardt S, Brundin L (2015) A role for inflammatory metabolites as modulators of the glutamate N-methyl-D-aspartate receptor in depression and suicidality. Brain Behav Immun 43:110–117. doi:10.1016/j.bbi.2014.07.012

    Article  CAS  PubMed  Google Scholar 

  66. van Heeringen K, Bijttebier S, Desmyter S, Vervaet M, Baeken C (2014) Is there a neuroanatomical basis of the vulnerability to suicidal behavior? A coordinate-based meta-analysis of structural and functional MRI studies. Front Hum Neurosci 8:824. doi:10.3389/fnhum.2014.00824

    PubMed  PubMed Central  Google Scholar 

  67. Steiner J, Walter M, Gos T, Guillemin GJ, Bernstein HG, Sarnyai Z, Mawrin C, Brisch R, Bielau H, Meyer zu Schwabedissen L, Bogerts B, Myint AM (2011) Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission? J Neuroinflammation 8:94. doi:10.1186/1742-2094-8-94

    Google Scholar 

  68. Busse M, Busse S, Myint AM, Gos T, Dobrowolny H, Muller UJ, Bogerts B, Bernstein HG, Steiner J (2015) Decreased quinolinic acid in the hippocampus of depressive patients: evidence for local anti-inflammatory and neuroprotective responses? Eur Arch Psychiatry Clin Neurosci 265(4):321–329. doi:10.1007/s00406-014-0562-0

    Article  PubMed  Google Scholar 

  69. Stone TW, Stoy N, Darlington LG (2013) An expanding range of targets for kynurenine metabolites of tryptophan. Trends Pharmacol Sci 34(2):136–143. doi:10.1016/j.tips.2012.09.006

    Article  CAS  PubMed  Google Scholar 

  70. Moroni F, Cozzi A, Sili M, Mannaioni G (2012) Kynurenic acid: a metabolite with multiple actions and multiple targets in brain and periphery. J Neural Transm 119(2):133–139. doi:10.1007/s00702-011-0763-x

    Article  CAS  PubMed  Google Scholar 

  71. Wang J, Simonavicius N, Wu X, Swaminath G, Reagan J, Tian H, Ling L (2006) Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem 281(31):22021–22028. doi:10.1074/jbc.M603503200

    Article  CAS  PubMed  Google Scholar 

  72. Hardeland R, Zsizsik BK, Poeggeler B, Fuhrberg B, Holst S, Coto-Montes A (1999) Indole-3-pyruvic and -propionic acids, kynurenic acid, and related metabolites as luminophores and free-radical scavengers. Adv Exp Med Biol 467:389–395

    Article  CAS  PubMed  Google Scholar 

  73. Lugo-Huitron R, Blanco-Ayala T, Ugalde-Muniz P, Carrillo-Mora P, Pedraza-Chaverri J, Silva-Adaya D, Maldonado PD, Torres I, Pinzon E, Ortiz-Islas E, Lopez T, Garcia E, Pineda B, Torres-Ramos M, Santamaria A, La Cruz VP (2011) On the antioxidant properties of kynurenic acid: free radical scavenging activity and inhibition of oxidative stress. Neurotoxicol Teratol 33(5):538–547. doi:10.1016/j.ntt.2011.07.002

    Article  CAS  PubMed  Google Scholar 

  74. Erhardt S, Olsson SK, Engberg G (2009) Pharmacological manipulation of kynurenic acid: potential in the treatment of psychiatric disorders. CNS Drugs 23(2):91–101. doi:10.2165/00023210-200923020-00001

    Article  CAS  PubMed  Google Scholar 

  75. Erhardt S, Schwieler L, Engberg G (2003) Kynurenic acid and schizophrenia. Adv Exp Med Biol 527:155–165

    Article  CAS  PubMed  Google Scholar 

  76. Linderholm KR, Skogh E, Olsson SK, Dahl ML, Holtze M, Engberg G, Samuelsson M, Erhardt S (2012) Increased levels of kynurenine and kynurenic acid in the CSF of patients with schizophrenia. Schizophr Bull 38(3):426–432. doi:10.1093/schbul/sbq086

    Article  PubMed  Google Scholar 

  77. Carlborg A, Jokinen J, Jonsson EG, Erhardt S, Nordstrom P (2013) CSF kynurenic acid and suicide risk in schizophrenia spectrum psychosis. Psychiatry Res 205(1–2):165–167. doi:10.1016/j.psychres.2012.08.021

    Article  CAS  PubMed  Google Scholar 

  78. Myint AM, Kim YK, Verkerk R, Scharpe S, Steinbusch H, Leonard B (2007) Kynurenine pathway in major depression: evidence of impaired neuroprotection. J Affect Disord 98(1–2):143–151. doi:10.1016/j.jad.2006.07.013

    Article  CAS  PubMed  Google Scholar 

  79. Savitz J, Drevets WC, Wurfel BE, Ford BN, Bellgowan PS, Victor TA, Bodurka J, Teague TK, Dantzer R (2015) Reduction of kynurenic acid to quinolinic acid ratio in both the depressed and remitted phases of major depressive disorder. Brain Behav Immun 46:55–59. doi:10.1016/j.bbi.2015.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Coggan SE, Smythe GA, Bilgin A, Grant RS (2009) Age and circadian influences on picolinic acid concentrations in human cerebrospinal fluid. J Neurochem 108(5):1220–1225. doi:10.1111/j.1471-4159.2009.05868.x

    Article  CAS  PubMed  Google Scholar 

  81. Wang X, Davis I, Liu A, Miller A, Shamsi SA (2013) Improved separation and detection of picolinic acid and quinolinic acid by capillary electrophoresis-mass spectrometry: application to analysis of human cerebrospinal fluid. J Chromatogr A 1316:147–153. doi:10.1016/j.chroma.2013.09.085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pucci L, Perozzi S, Cimadamore F, Orsomando G, Raffaelli N (2007) Tissue expression and biochemical characterization of human 2-amino 3-carboxymuconate 6-semialdehyde decarboxylase, a key enzyme in tryptophan catabolism. FEBS J 274(3):827–840. doi:10.1111/j.1742-4658.2007.05635.x

    Article  CAS  PubMed  Google Scholar 

  83. Fukuoka S, Ishiguro K, Tanabe A, Egashira Y, Sanada H, Fukuwatari T, Shibata K (2003) Identification and expression of alpha cDNA encoding human 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase (ACMSD): a key enzyme for the tryptophan-niacin pathway and quinolinate hypothesis. Adv Exp Med Biol 527:443–453

    Article  CAS  PubMed  Google Scholar 

  84. Guillemin GJ, Cullen KM, Lim CK, Smythe GA, Garner B, Kapoor V, Takikawa O, Brew BJ (2007) Characterization of the kynurenine pathway in human neurons. J Neurosci 27(47):12884–12892. doi:10.1523/JNEUROSCI.4101-07.2007

    Article  CAS  PubMed  Google Scholar 

  85. Grant RS, Coggan SE, Smythe GA (2009) The physiological action of picolinic acid in the human brain. Int J Tryptophan Res 2:71–79

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Beninger RJ, Colton AM, Ingles JL, Jhamandas K, Boegman RJ (1994) Picolinic acid blocks the neurotoxic but not the neuroexcitant properties of quinolinic acid in the rat brain: evidence from turning behaviour and tyrosine hydroxylase immunohistochemistry. Neuroscience 61(3):603–612

    Article  CAS  PubMed  Google Scholar 

  87. Chen Y, Brew BJ, Guillemin GJ (2011) Characterization of the kynurenine pathway in NSC-34 cell line: implications for amyotrophic lateral sclerosis. J Neurochem 118(5):816–825. doi:10.1111/j.1471-4159.2010.07159.x

    Article  CAS  PubMed  Google Scholar 

  88. Cockhill J, Jhamandas K, Boegman RJ, Beninger RJ (1992) Action of picolinic acid and structurally related pyridine carboxylic acids on quinolinic acid-induced cortical cholinergic damage. Brain Res 599(1):57–63

    Article  CAS  PubMed  Google Scholar 

  89. Jhamandas KH, Boegman RJ, Beninger RJ, Flesher S (1998) Role of zinc in blockade of excitotoxic action of quinolinic acid by picolinic acid. Amino Acids 14(1–3):257–261

    Article  CAS  PubMed  Google Scholar 

  90. Davidson JR, Abraham K, Connor KM, McLeod MN (2003) Effectiveness of chromium in atypical depression: a placebo-controlled trial. Biol Psychiatry 53(3):261–264

    Article  CAS  PubMed  Google Scholar 

  91. Docherty JP, Sack DA, Roffman M, Finch M, Komorowski JR (2005) A double-blind, placebo-controlled, exploratory trial of chromium picolinate in atypical depression: effect on carbohydrate craving. J Psychiatr Pract 11(5):302–314

    Article  PubMed  Google Scholar 

  92. McLeod MN, Gaynes BN, Golden RN (1999) Chromium potentiation of antidepressant pharmacotherapy for dysthymic disorder in 5 patients. J Clin Psychiatry 60(4):237–240

    Article  CAS  PubMed  Google Scholar 

  93. Dubey VK, Ansari F, Vohora D, Khanam R (2015) Possible involvement of corticosterone and serotonin in antidepressant and antianxiety effects of chromium picolinate in chronic unpredictable mild stress induced depression and anxiety in rats. J Trace Elem Med Biol 29:222–226. doi:10.1016/j.jtemb.2014.06.014

    Article  CAS  PubMed  Google Scholar 

  94. Baran H, Schwarcz R (1990) Presence of 3-hydroxyanthranilic acid in rat tissues and evidence for its production from anthranilic acid in the brain. J Neurochem 55(3):738–744

    Article  CAS  PubMed  Google Scholar 

  95. Darlington LG, Forrest CM, Mackay GM, Smith RA, Smith AJ, Stoy N, Stone TW (2010) On the biological importance of the 3-hydroxyanthranilic acid: anthranilic acid ratio. Int J Tryptophan Res 3:51–59

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Christen S, Peterhans E, Stocker R (1990) Antioxidant activities of some tryptophan metabolites: possible implication for inflammatory diseases. Proc Natl Acad Sci U S A 87(7):2506–2510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Goldstein LE, Leopold MC, Huang X, Atwood CS, Saunders AJ, Hartshorn M, Lim JT, Faget KY, Muffat JA, Scarpa RC, Chylack LT Jr, Bowden EF, Tanzi RE, Bush AI (2000) 3-Hydroxykynurenine and 3-hydroxyanthranilic acid generate hydrogen peroxide and promote alpha-crystallin cross-linking by metal ion reduction. Biochemistry 39(24):7266–7275

    Article  CAS  PubMed  Google Scholar 

  98. Hughes MM, Carballedo A, McLoughlin DM, Amico F, Harkin A, Frodl T, Connor TJ (2012) Tryptophan depletion in depressed patients occurs independent of kynurenine pathway activation. Brain Behav Immun 26(6):979–987. doi:10.1016/j.bbi.2012.05.010

    Article  CAS  PubMed  Google Scholar 

  99. Gabbay V, Klein RG, Katz Y, Mendoza S, Guttman LE, Alonso CM, Babb JS, Hirsch GS, Liebes L (2010) The possible role of the kynurenine pathway in adolescent depression with melancholic features. J Child Psychol Psychiatry 51(8):935–943. doi:10.1111/j.1469-7610.2010.02245.x

    Article  PubMed  PubMed Central  Google Scholar 

  100. Gabbay V, Liebes L, Katz Y, Liu S, Mendoza S, Babb JS, Klein RG, Gonen O (2010) The kynurenine pathway in adolescent depression: preliminary findings from a proton MR spectroscopy study. Prog Neuropsychopharmacol Biol Psychiatry 34(1):37–44. doi:10.1016/j.pnpbp.2009.09.015

    Article  CAS  PubMed  Google Scholar 

  101. Claes S, Myint AM, Domschke K, Del-Favero J, Entrich K, Engelborghs S, De Deyn P, Mueller N, Baune B, Rothermundt M (2011) The kynurenine pathway in major depression: haplotype analysis of three related functional candidate genes. Psychiatry Res 188(3):355–360. doi:10.1016/j.psychres.2011.03.012

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lena Brundin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bryleva, E.Y., Brundin, L. (2016). Suicidality and Activation of the Kynurenine Pathway of Tryptophan Metabolism. In: Dantzer, R., Capuron, L. (eds) Inflammation-Associated Depression: Evidence, Mechanisms and Implications. Current Topics in Behavioral Neurosciences, vol 31. Springer, Cham. https://doi.org/10.1007/7854_2016_5

Download citation

Publish with us

Policies and ethics