Skip to main content
Erschienen in: Wiener Medizinische Wochenschrift 15-16/2014

01.08.2014 | review

Intracellular lipid accumulation and shift during diabetes progression

verfasst von: Peter Wolf, MD, Yvonne Winhofer, MD, PhD, Mag. pharm. Christian-Heinz Anderwald, MD, Martin Krššák, PhD, Michael Krebs, MD

Erschienen in: Wiener Medizinische Wochenschrift | Ausgabe 15-16/2014

Einloggen, um Zugang zu erhalten

Summary

In past decades, type 2 diabetes mellitus (T2DM) and nonalcoholic fatty liver disease developed into a global public health disease with an endemic scale. Although up to now the pathogenesis of T2DM is still poorly understood, ectopic lipid accumulation is one of the strongest predictors for T2DM and is closely associated with insulin resistance.
This review aims (i) to overview recent literature on the impact of intracellular lipid deposition, (ii) to point out changes in ectopic fat accumulation during diabetes progression or shortly after initializing individual therapy, and finally (iii) to expose unsolved questions and future perspectives in the role of ectopic lipids for the development of insulin resistance and T2DM.
Literatur
2.
Zurück zum Zitat Boyle JP, Thompson TJ, Gregg EW, Barker LE, Williamson DF. Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence. Popul Health Metr. 2010;8(1):29. Boyle JP, Thompson TJ, Gregg EW, Barker LE, Williamson DF. Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence. Popul Health Metr. 2010;8(1):29.
6.
Zurück zum Zitat Perseghin G. Viewpoints on the way to a consensus session: where does insulin resistance start? The liver. Diabetes Care. 2009;32(Suppl. 2):S164–7. Perseghin G. Viewpoints on the way to a consensus session: where does insulin resistance start? The liver. Diabetes Care. 2009;32(Suppl. 2):S164–7.
7.
Zurück zum Zitat Birkenfeld AL, Shulman GI. Non alcoholic fatty liver disease, hepatic insulin resistance and type 2 diabetes. Hepatology. 2014;59(2):713–23.PubMedCrossRef Birkenfeld AL, Shulman GI. Non alcoholic fatty liver disease, hepatic insulin resistance and type 2 diabetes. Hepatology. 2014;59(2):713–23.PubMedCrossRef
9.
Zurück zum Zitat Mcgavock JM, Lingvay I, Zib I, Tillery T, Salas N, Unger R, et al. Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Circulation. 2007;116:1170–5.PubMedCrossRef Mcgavock JM, Lingvay I, Zib I, Tillery T, Salas N, Unger R, et al. Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Circulation. 2007;116:1170–5.PubMedCrossRef
10.
Zurück zum Zitat Krššák M, Winhofer Y, Göbl C, Bischof M, Reiter G, Kautzky-Willer A, et al. Insulin resistance is not associated with myocardial steatosis in women. Diabetologia. 2011;54(7):1871–8.PubMedCrossRef Krššák M, Winhofer Y, Göbl C, Bischof M, Reiter G, Kautzky-Willer A, et al. Insulin resistance is not associated with myocardial steatosis in women. Diabetologia. 2011;54(7):1871–8.PubMedCrossRef
11.
Zurück zum Zitat Rijzewijk L, van der Meer R, Smit J, Diamant M, Bax JJ, Hammer S, et al. Myocardial steatosis is an independent predictor of diastolic dysfunction in type 2 diabetes mellitus. J Am Coll Cardiol. 2008;52(22):1793–9.PubMedCrossRef Rijzewijk L, van der Meer R, Smit J, Diamant M, Bax JJ, Hammer S, et al. Myocardial steatosis is an independent predictor of diastolic dysfunction in type 2 diabetes mellitus. J Am Coll Cardiol. 2008;52(22):1793–9.PubMedCrossRef
12.
Zurück zum Zitat Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963;1(7285):785–9.PubMedCrossRef Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963;1(7285):785–9.PubMedCrossRef
13.
Zurück zum Zitat Randle PJ, Garland PB, Newsholmei EA, Hales CN. The glucose fatty acid cycle in obesity and maturity onset diabetes mellitus. Ann N Y Acad Sci. 1965;131(1):324–33.PubMedCrossRef Randle PJ, Garland PB, Newsholmei EA, Hales CN. The glucose fatty acid cycle in obesity and maturity onset diabetes mellitus. Ann N Y Acad Sci. 1965;131(1):324–33.PubMedCrossRef
14.
Zurück zum Zitat Reaven GM, Hollenbeck C, Jeng CY, Wu MS, Chen YD. Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDM. Diabetes. 1988;37(8):1020–4.PubMedCrossRef Reaven GM, Hollenbeck C, Jeng CY, Wu MS, Chen YD. Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDM. Diabetes. 1988;37(8):1020–4.PubMedCrossRef
15.
Zurück zum Zitat Perseghin G, Ghosh S, Gerow K, Shulman GI. Metabolic defects in lean nondiabetic offspring of NIDDM parents: a cross-sectional study. Diabetes. 1997;46(6):1001–9.PubMedCrossRef Perseghin G, Ghosh S, Gerow K, Shulman GI. Metabolic defects in lean nondiabetic offspring of NIDDM parents: a cross-sectional study. Diabetes. 1997;46(6):1001–9.PubMedCrossRef
16.
Zurück zum Zitat Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW, et al. Mechanism of free fatty acid—induced insulin resistance in humans. J Clin Invest. 1996;97(12):2859–65.PubMedCentralPubMedCrossRef Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW, et al. Mechanism of free fatty acid—induced insulin resistance in humans. J Clin Invest. 1996;97(12):2859–65.PubMedCentralPubMedCrossRef
17.
Zurück zum Zitat Pan D, Lillioja S, Kriketos D, Milner M, Baur L, Bogardus C, et al. Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes. 1997;46(6):983–8.PubMedCrossRef Pan D, Lillioja S, Kriketos D, Milner M, Baur L, Bogardus C, et al. Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes. 1997;46(6):983–8.PubMedCrossRef
18.
Zurück zum Zitat Forouhi NG, Jenkinson G, Thomas EL, Mullick S, Mierisova S, Bhonsle U, et al. Relation of triglyceride stores in skeletal muscle cells to central obesity and insulin sensitivity in European and South Asian men. Diabetologia. 1999;42:932–5.PubMedCrossRef Forouhi NG, Jenkinson G, Thomas EL, Mullick S, Mierisova S, Bhonsle U, et al. Relation of triglyceride stores in skeletal muscle cells to central obesity and insulin sensitivity in European and South Asian men. Diabetologia. 1999;42:932–5.PubMedCrossRef
19.
Zurück zum Zitat Krssak M, Petersen KF, Dresner A, Dipietro L, Vogel SM, Rothman DL, et al. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1 H NMR spectroscopy study. Diabetologia. 1999;42:113–6.PubMedCrossRef Krssak M, Petersen KF, Dresner A, Dipietro L, Vogel SM, Rothman DL, et al. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1 H NMR spectroscopy study. Diabetologia. 1999;42:113–6.PubMedCrossRef
20.
Zurück zum Zitat Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 2004;350(7):664–71.PubMedCentralPubMedCrossRef Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 2004;350(7):664–71.PubMedCentralPubMedCrossRef
21.
Zurück zum Zitat Petersen KF, Dufour S, Shulman GI. Decreased insulin-stimulated ATP synthesis and phosphate transport in muscle of insulin-resistant offspring of type 2 diabetic parents. PLoS Med. 2005;2(9):e233.PubMedCentralPubMedCrossRef Petersen KF, Dufour S, Shulman GI. Decreased insulin-stimulated ATP synthesis and phosphate transport in muscle of insulin-resistant offspring of type 2 diabetic parents. PLoS Med. 2005;2(9):e233.PubMedCentralPubMedCrossRef
22.
Zurück zum Zitat Petersen KF, Dufour S, Savage DB, Bilz S, Solomon G, Yonemitsu S, et al. The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci U S A. 2007;104(31):12587–94.PubMedCentralPubMedCrossRef Petersen KF, Dufour S, Savage DB, Bilz S, Solomon G, Yonemitsu S, et al. The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci U S A. 2007;104(31):12587–94.PubMedCentralPubMedCrossRef
23.
Zurück zum Zitat Szendroedi J, Kaul K, Kloock L, Straßburger K, Schmid A, Chmelik M, et al. Lower fasting muscle mitochondrial activity relates to hepatic steatosis in humans. Diabetes Care. 2014;37(2):468–74.PubMedCrossRef Szendroedi J, Kaul K, Kloock L, Straßburger K, Schmid A, Chmelik M, et al. Lower fasting muscle mitochondrial activity relates to hepatic steatosis in humans. Diabetes Care. 2014;37(2):468–74.PubMedCrossRef
24.
Zurück zum Zitat Hwang J-H, Stein DT, Barzilai N, Cui M-H, Tonelli J, Kishore P, et al. Increased intrahepatic triglyceride is associated with peripheral insulin resistance: in vivo MR imaging and spectroscopy studies. Am J Physiol Endocrinol Metab. 2007;293(6):E1663–9.PubMedCrossRef Hwang J-H, Stein DT, Barzilai N, Cui M-H, Tonelli J, Kishore P, et al. Increased intrahepatic triglyceride is associated with peripheral insulin resistance: in vivo MR imaging and spectroscopy studies. Am J Physiol Endocrinol Metab. 2007;293(6):E1663–9.PubMedCrossRef
25.
Zurück zum Zitat Anderwald C, Bernroider E, Krssak M, Stingl H, Brehm A, Bischof MG, et al. Effects of insulin treatment in type 2 diabetic patients on intracellular lipid content in liver and skeletal muscle. Diabetes. 2002;51(10):3025–32.PubMedCrossRef Anderwald C, Bernroider E, Krssak M, Stingl H, Brehm A, Bischof MG, et al. Effects of insulin treatment in type 2 diabetic patients on intracellular lipid content in liver and skeletal muscle. Diabetes. 2002;51(10):3025–32.PubMedCrossRef
26.
Zurück zum Zitat Krssak M, Brehm A, Bernroider E, Anderwald C, Nowotny P, Man CD, et al. Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes. Diabetes. 2004;53:3048–56. Krssak M, Brehm A, Bernroider E, Anderwald C, Nowotny P, Man CD, et al. Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes. Diabetes. 2004;53:3048–56.
27.
Zurück zum Zitat Williams KH, Shackel NA, Gorrell MD, Mclennan SV, Twigg SM, et al. Diabetes and nonalcoholic fatty liver disease: a pathogenic duo. Endocr Rev. 2013;34(1):84–129.PubMedCrossRef Williams KH, Shackel NA, Gorrell MD, Mclennan SV, Twigg SM, et al. Diabetes and nonalcoholic fatty liver disease: a pathogenic duo. Endocr Rev. 2013;34(1):84–129.PubMedCrossRef
28.
Zurück zum Zitat Pischon T, Boeing H, Hoffmann K, Bergmann M, Schulze MB, Overvad K, et al. General and abdominal adiposity and risk of death in europe. N Engl J Med. 2008;359:2105–20.PubMedCrossRef Pischon T, Boeing H, Hoffmann K, Bergmann M, Schulze MB, Overvad K, et al. General and abdominal adiposity and risk of death in europe. N Engl J Med. 2008;359:2105–20.PubMedCrossRef
29.
Zurück zum Zitat Wang Y, Rimm EB, Stampfer MJ, Willett WC, Hu FB. Comparison of abdominal adiposity and overall obesity in predicting risk of type 2 diabetes among men. Am J Clin Nutr. 2005;81:555–63.PubMed Wang Y, Rimm EB, Stampfer MJ, Willett WC, Hu FB. Comparison of abdominal adiposity and overall obesity in predicting risk of type 2 diabetes among men. Am J Clin Nutr. 2005;81:555–63.PubMed
30.
Zurück zum Zitat Fabbrini E, Magkos F, Mohammed BS, Pietka T, Abumrad NA, Patterson BW, et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc Natl Acad Sci U S A. 2009;106(36):15430–5.PubMedCentralPubMedCrossRef Fabbrini E, Magkos F, Mohammed BS, Pietka T, Abumrad NA, Patterson BW, et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc Natl Acad Sci U S A. 2009;106(36):15430–5.PubMedCentralPubMedCrossRef
31.
Zurück zum Zitat Petersen KF, Oral EA, Dufour S, Befroy D, Ariyan C, Yu C, et al. Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J Clin Invest. 2002;109(10):1285–6.CrossRef Petersen KF, Oral EA, Dufour S, Befroy D, Ariyan C, Yu C, et al. Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J Clin Invest. 2002;109(10):1285–6.CrossRef
32.
Zurück zum Zitat Stefan N, Kantartzis K, Machann J, Schick F, Thamer C, Rittig K, et al. Identification and characterization of metabolically benign obesity in humans. Arch Intern Med. 2008;168(15):1609–16.PubMedCrossRef Stefan N, Kantartzis K, Machann J, Schick F, Thamer C, Rittig K, et al. Identification and characterization of metabolically benign obesity in humans. Arch Intern Med. 2008;168(15):1609–16.PubMedCrossRef
33.
Zurück zum Zitat Lingvay I, Esser V, Legendre JL, Price AL, Wertz KM, Adams-Huet B, et al. Noninvasive quantification of pancreatic fat in humans. J Clin Endocrinol Metab. 2009;94(10):4070–6.PubMedCentralPubMedCrossRef Lingvay I, Esser V, Legendre JL, Price AL, Wertz KM, Adams-Huet B, et al. Noninvasive quantification of pancreatic fat in humans. J Clin Endocrinol Metab. 2009;94(10):4070–6.PubMedCentralPubMedCrossRef
34.
Zurück zum Zitat Heni M, Staiger H, Schwenzer NF, Peter A, Schick F, Claussen CD, et al. Pancreatic fat is negatively associated with insulin secretion in individuals with impaired fasting glucose and/or impaired glucose tolerance: a nuclear magnetic resonance study. Diabetes Metab Res Rev. 2010;26(3):200–5. Heni M, Staiger H, Schwenzer NF, Peter A, Schick F, Claussen CD, et al. Pancreatic fat is negatively associated with insulin secretion in individuals with impaired fasting glucose and/or impaired glucose tolerance: a nuclear magnetic resonance study. Diabetes Metab Res Rev. 2010;26(3):200–5.
35.
Zurück zum Zitat Tushuizen M, Bunck M, Pouwels P, Bontemps S, Van Waesberghe J, Schindhelm R, et al. Pancreatic fat content and b-cell function in men with and without type 2 diabetes. Diabetes Care. 2007;30(11):2916–21. Tushuizen M, Bunck M, Pouwels P, Bontemps S, Van Waesberghe J, Schindhelm R, et al. Pancreatic fat content and b-cell function in men with and without type 2 diabetes. Diabetes Care. 2007;30(11):2916–21.
36.
Zurück zum Zitat Bertoni A, Tsai A, Kasper E, Brancati F. Diabetes and idiopathic cardiomyopathy. Diabets Care. 2003;26(10):2791–5.CrossRef Bertoni A, Tsai A, Kasper E, Brancati F. Diabetes and idiopathic cardiomyopathy. Diabets Care. 2003;26(10):2791–5.CrossRef
38.
Zurück zum Zitat Szczepaniak LS, Dobbins RL, Metzger GJ, Sartoni-D’Ambrosia G, Arbique D, Vongpatanasin W, et al. Myocardial triglycerides and systolic function in humans: in vivo evaluation by localized proton spectroscopy and cardiac imaging. Magn Reson Med. 2003;49(3):417–23.PubMedCrossRef Szczepaniak LS, Dobbins RL, Metzger GJ, Sartoni-D’Ambrosia G, Arbique D, Vongpatanasin W, et al. Myocardial triglycerides and systolic function in humans: in vivo evaluation by localized proton spectroscopy and cardiac imaging. Magn Reson Med. 2003;49(3):417–23.PubMedCrossRef
39.
Zurück zum Zitat Iozzo P, Lautamaki R, Borra R, Lehto H-R, Bucci M, Viljanen A, et al. Contribution of glucose tolerance and gender to cardiac adiposity. J Clin Endocrinol Metab. 2009;94(11):4472–82.PubMedCrossRef Iozzo P, Lautamaki R, Borra R, Lehto H-R, Bucci M, Viljanen A, et al. Contribution of glucose tolerance and gender to cardiac adiposity. J Clin Endocrinol Metab. 2009;94(11):4472–82.PubMedCrossRef
40.
Zurück zum Zitat Hammer S, van der Meer RW, Lamb HJ, Schär M, de Roos A, Smit JWA, et al. Progressive caloric restriction induces dose-dependent changes in myocardial triglyceride content and diastolic function in healthy men. J Clin Endocrinol Metab. 2008;93(2):497–503. Hammer S, van der Meer RW, Lamb HJ, Schär M, de Roos A, Smit JWA, et al. Progressive caloric restriction induces dose-dependent changes in myocardial triglyceride content and diastolic function in healthy men. J Clin Endocrinol Metab. 2008;93(2):497–503.
41.
Zurück zum Zitat Hammer S, Van Der Meer RW, Lamb HJ, De Boer HH, Bax JJ, De Roos A, et al. Short-term flexibility of myocardial triglycerides and diastolic function in patients with type 2 diabetes mellitus. Am J Physiol Endocrinol Metab. 2008;295:714–8. Hammer S, Van Der Meer RW, Lamb HJ, De Boer HH, Bax JJ, De Roos A, et al. Short-term flexibility of myocardial triglycerides and diastolic function in patients with type 2 diabetes mellitus. Am J Physiol Endocrinol Metab. 2008;295:714–8.
42.
Zurück zum Zitat Winhofer Y, Krssák M, Jankovic D, Anderwald C-H, Reiter G, Hofer A, et al. Short-term hyperinsulinemia and hyperglycemia increase myocardial lipid content in normal subjects. Diabetes. 2012;61(5):1210–6.PubMedCentralPubMedCrossRef Winhofer Y, Krssák M, Jankovic D, Anderwald C-H, Reiter G, Hofer A, et al. Short-term hyperinsulinemia and hyperglycemia increase myocardial lipid content in normal subjects. Diabetes. 2012;61(5):1210–6.PubMedCentralPubMedCrossRef
43.
Zurück zum Zitat Bonapace S, Perseghin G, Molon G, Canali G, Bertolini L, Zoppini G, et al. Nonalcoholic fatty liver disease is associated with left ventricular diastolic dysfunction in patients with type 2 diabetes. Diabetes Care. 2012;35(2):389–95.PubMedCentralPubMedCrossRef Bonapace S, Perseghin G, Molon G, Canali G, Bertolini L, Zoppini G, et al. Nonalcoholic fatty liver disease is associated with left ventricular diastolic dysfunction in patients with type 2 diabetes. Diabetes Care. 2012;35(2):389–95.PubMedCentralPubMedCrossRef
44.
Zurück zum Zitat Perseghin G, Lattuada G, De Cobelli F, Esposito A, Belloni E, Ntali G, et al. Increased mediastinal fat and impaired left ventricular energy metabolism in young men with newly found fatty liver. Hepatology. 2008;47(1):51–8.PubMedCrossRef Perseghin G, Lattuada G, De Cobelli F, Esposito A, Belloni E, Ntali G, et al. Increased mediastinal fat and impaired left ventricular energy metabolism in young men with newly found fatty liver. Hepatology. 2008;47(1):51–8.PubMedCrossRef
45.
Zurück zum Zitat Pacifico L, Di Martino M, De Merulis A, Bezzi M, Osborn JF, Catalano C, et al. Left ventricular dysfunction in obese children and adolescents with nonalcoholic fatty liver disease. Hepatology. 2014;59(2):461–70.PubMedCrossRef Pacifico L, Di Martino M, De Merulis A, Bezzi M, Osborn JF, Catalano C, et al. Left ventricular dysfunction in obese children and adolescents with nonalcoholic fatty liver disease. Hepatology. 2014;59(2):461–70.PubMedCrossRef
46.
Zurück zum Zitat Rijzewijk LJ, Jonker JT, van der Meer RW, Lubberink M, de Jong HW, Romijn JA, et al. Effects of hepatic triglyceride content on myocardial metabolism in type 2 diabetes. J Am Coll Cardiol. 2010;56(3):225–33. Rijzewijk LJ, Jonker JT, van der Meer RW, Lubberink M, de Jong HW, Romijn JA, et al. Effects of hepatic triglyceride content on myocardial metabolism in type 2 diabetes. J Am Coll Cardiol. 2010;56(3):225–33.
47.
Zurück zum Zitat Lautamäki R, Borra R, Iozzo P, Komu M, Lehtima T, Salmi M, et al. Liver steatosis coexists with myocardial insulin resistance and coronary dysfunction in patients with type 2 diabetes. Am J Physiol Endocrinol Metab. 2006;291:282–90.CrossRef Lautamäki R, Borra R, Iozzo P, Komu M, Lehtima T, Salmi M, et al. Liver steatosis coexists with myocardial insulin resistance and coronary dysfunction in patients with type 2 diabetes. Am J Physiol Endocrinol Metab. 2006;291:282–90.CrossRef
48.
Zurück zum Zitat Thomsen C, Becker U, Winkler K, Christoffersen P, Jensen M, Henriksen O. Quantification of liver fat using magnetic resonance spectroscopy. Magn Reson Med. 1994;12(3):487–95. Thomsen C, Becker U, Winkler K, Christoffersen P, Jensen M, Henriksen O. Quantification of liver fat using magnetic resonance spectroscopy. Magn Reson Med. 1994;12(3):487–95.
49.
Zurück zum Zitat Szczepaniak LS, Babcock EE, Schick F, Dobbins RL, Garg A, Burns DK, et al. Measurement of intracellular triglyceride stores by H spectroscopy: validation in vivo. Am J Physiol. 1999;276(5):E977–89.PubMed Szczepaniak LS, Babcock EE, Schick F, Dobbins RL, Garg A, Burns DK, et al. Measurement of intracellular triglyceride stores by H spectroscopy: validation in vivo. Am J Physiol. 1999;276(5):E977–89.PubMed
50.
Zurück zum Zitat Reingold J, McGavock J, Kaka S, Tillery T, Victor R, Szczepaniak L. Determination of triglyceride in the human myocardium by magnetic resonance spectroscopy: reproducibility and sensitivity of the method. Am J Physiol Endocrinol Metab. 2005;289:E935–9.PubMedCrossRef Reingold J, McGavock J, Kaka S, Tillery T, Victor R, Szczepaniak L. Determination of triglyceride in the human myocardium by magnetic resonance spectroscopy: reproducibility and sensitivity of the method. Am J Physiol Endocrinol Metab. 2005;289:E935–9.PubMedCrossRef
51.
Zurück zum Zitat Krssak M, Hofer H, Wrba F, Meyerspeer M, Brehm A, Steindl P, et al. Liver fat content and insulin resistance in chronic hepatitis C patients. Eur J Radiol. 2010;74(3):e60–6.PubMedCrossRef Krssak M, Hofer H, Wrba F, Meyerspeer M, Brehm A, Steindl P, et al. Liver fat content and insulin resistance in chronic hepatitis C patients. Eur J Radiol. 2010;74(3):e60–6.PubMedCrossRef
52.
Zurück zum Zitat Longo R, Ricci C, Masutti F, Vidimari R, Croce L, Vercich L, et al. Fatty infiltration of the liver. Quantification by 1H localized magnetic resonance spectroscopy and comparison with computed tomography. Invest Radiol. 1993;28(4):297–302.PubMedCrossRef Longo R, Ricci C, Masutti F, Vidimari R, Croce L, Vercich L, et al. Fatty infiltration of the liver. Quantification by 1H localized magnetic resonance spectroscopy and comparison with computed tomography. Invest Radiol. 1993;28(4):297–302.PubMedCrossRef
54.
Zurück zum Zitat Boesch C, Slotboom J, Hoppeler H, Kreis R. In vivo determination of intra-myocellular lipids in human muscle by means of localized 1H-MR-spectroscopy. Magn Reson Med. 1997;37(4):484–93.PubMedCrossRef Boesch C, Slotboom J, Hoppeler H, Kreis R. In vivo determination of intra-myocellular lipids in human muscle by means of localized 1H-MR-spectroscopy. Magn Reson Med. 1997;37(4):484–93.PubMedCrossRef
55.
Zurück zum Zitat Dimitrov I, Ren J, Douglas D, Sherry A, Malloy C. In vivo detection of trans-fatty acids by 13C MRS at 7T. Proc Intl Soc Mag Reson Med. 2010;374. Dimitrov I, Ren J, Douglas D, Sherry A, Malloy C. In vivo detection of trans-fatty acids by 13C MRS at 7T. Proc Intl Soc Mag Reson Med. 2010;374.
56.
Zurück zum Zitat Gajdosik M, Chmelik M, Just-Kukurova I, Bogner W, Valkovic L, Trattnig S, et al. In vivo relaxation behavior of liver compounds at 7 tesla, measured by single-voxel proton MR spectroscopy. J Magn Reson Imaging. In press 2013. Gajdosik M, Chmelik M, Just-Kukurova I, Bogner W, Valkovic L, Trattnig S, et al. In vivo relaxation behavior of liver compounds at 7 tesla, measured by single-voxel proton MR spectroscopy. J Magn Reson Imaging. In press 2013.
57.
Zurück zum Zitat Hwang J, Bluml S, Leaf A, Ross B. In vivo characterization of fatty acids in human adipose tissue using natural abundance 1H decoupled 13C MRS at 1.5 T: clinical applications to dietary therapy. NMR Biomed. 2003;16:160–7.PubMedCrossRef Hwang J, Bluml S, Leaf A, Ross B. In vivo characterization of fatty acids in human adipose tissue using natural abundance 1H decoupled 13C MRS at 1.5 T: clinical applications to dietary therapy. NMR Biomed. 2003;16:160–7.PubMedCrossRef
58.
Zurück zum Zitat Johnson N, Walton D, Sachinwalla T, Thompson C, Smith K, Ruell P, et al. Noninvasive assessment of hepatic lipid composition: advancing understanding and management of fatty liver disorders. Hepatology. 2008;47:1513–23.PubMedCrossRef Johnson N, Walton D, Sachinwalla T, Thompson C, Smith K, Ruell P, et al. Noninvasive assessment of hepatic lipid composition: advancing understanding and management of fatty liver disorders. Hepatology. 2008;47:1513–23.PubMedCrossRef
59.
Zurück zum Zitat Ren J, Dimitrov I, Sherry A, Malloy C. Composition of adipose tissue and marrow fat in humans by 1H NMR at 7 Tesla. J Lipid Res. 2008;49:2055–62.PubMedCentralPubMedCrossRef Ren J, Dimitrov I, Sherry A, Malloy C. Composition of adipose tissue and marrow fat in humans by 1H NMR at 7 Tesla. J Lipid Res. 2008;49:2055–62.PubMedCentralPubMedCrossRef
60.
Zurück zum Zitat Valkovic L, Gajdosik M, Traussnigg S, Wolf P, Chmelik M, Bogner W, et al. Assessment of hepatic metabolism by fast and localiced 31P MRS saturation transfer at 7T: reproducibiltiy and first clinical application in patients with non alcoholic fatty liver disease. Eur Radiol. 2014;24(7):1602–9. Valkovic L, Gajdosik M, Traussnigg S, Wolf P, Chmelik M, Bogner W, et al. Assessment of hepatic metabolism by fast and localiced 31P MRS saturation transfer at 7T: reproducibiltiy and first clinical application in patients with non alcoholic fatty liver disease. Eur Radiol. 2014;24(7):1602–9.
61.
Zurück zum Zitat Petersen K, Shulman G. Etiology of insulin resistance. Am J Med. 2006;119(5):10–6.CrossRef Petersen K, Shulman G. Etiology of insulin resistance. Am J Med. 2006;119(5):10–6.CrossRef
62.
Zurück zum Zitat Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and ikB-alpha. Diabetes. 2002;51:2005–11.PubMedCrossRef Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and ikB-alpha. Diabetes. 2002;51:2005–11.PubMedCrossRef
63.
Zurück zum Zitat Yu C, Chen Y, Cline GW, Zhang D, Zong H, Wang Y, et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem. 2002;277(52):50230–6.PubMedCrossRef Yu C, Chen Y, Cline GW, Zhang D, Zong H, Wang Y, et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem. 2002;277(52):50230–6.PubMedCrossRef
64.
Zurück zum Zitat Schmitz-Peiffer C. Protein kinase C and lipid-induced insulin. Ann N Y Acad Sci. 2002;967:146–57.PubMedCrossRef Schmitz-Peiffer C. Protein kinase C and lipid-induced insulin. Ann N Y Acad Sci. 2002;967:146–57.PubMedCrossRef
66.
Zurück zum Zitat Cortright RN, Azevedo JL, Zhou Q, Sinha M, Pories WJ, Itani SI, et al. Protein kinase C modulates insulin action in human skeletal muscle. Am J Physiol Endocrinol Metab. 2000;278(3):E553–62.PubMed Cortright RN, Azevedo JL, Zhou Q, Sinha M, Pories WJ, Itani SI, et al. Protein kinase C modulates insulin action in human skeletal muscle. Am J Physiol Endocrinol Metab. 2000;278(3):E553–62.PubMed
67.
Zurück zum Zitat Bollag GE, Roth RA, Beaudoin J, Mochly-Rosen D, Koshland DE. Protein kinase C directly phosphorylates the insulin receptor in vitro and reduces its protein-tyrosine kinase activity. Proc Natl Acad Sci U S A. 1986;83(16):5822–4.PubMedCentralPubMedCrossRef Bollag GE, Roth RA, Beaudoin J, Mochly-Rosen D, Koshland DE. Protein kinase C directly phosphorylates the insulin receptor in vitro and reduces its protein-tyrosine kinase activity. Proc Natl Acad Sci U S A. 1986;83(16):5822–4.PubMedCentralPubMedCrossRef
68.
Zurück zum Zitat Nowotny B, Zahiragic L, Krog D, Nowotny PJ, Herder C, Carstensen M, et al. Mechanisms underlying the onset of oral lipid-induced skeletal muscle insulin resistance in humans. Diabetes. 2013;62:2240–8.PubMedCentralPubMedCrossRef Nowotny B, Zahiragic L, Krog D, Nowotny PJ, Herder C, Carstensen M, et al. Mechanisms underlying the onset of oral lipid-induced skeletal muscle insulin resistance in humans. Diabetes. 2013;62:2240–8.PubMedCentralPubMedCrossRef
69.
Zurück zum Zitat Magkos F, Su X, Bradley D, Fabbrini E, Conte C, Eagon JC, et al. Intrahepatic diacylglycerol content is associated with hepatic insulin resistance in obese subjects. Gastroenterology. 2012;142(7):1444.e2–6.e2.PubMedCentralPubMedCrossRef Magkos F, Su X, Bradley D, Fabbrini E, Conte C, Eagon JC, et al. Intrahepatic diacylglycerol content is associated with hepatic insulin resistance in obese subjects. Gastroenterology. 2012;142(7):1444.e2–6.e2.PubMedCentralPubMedCrossRef
70.
Zurück zum Zitat Kumashiro N, Erion DM, Zhang D, Kahn M, Beddow SA, Chu X, et al. Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proc Natl Acad Sci U S A. 2011;108(39):16381–5.PubMedCentralPubMedCrossRef Kumashiro N, Erion DM, Zhang D, Kahn M, Beddow SA, Chu X, et al. Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proc Natl Acad Sci U S A. 2011;108(39):16381–5.PubMedCentralPubMedCrossRef
71.
Zurück zum Zitat Samuel VT, Liu Z-X, Qu X, Elder BD, Bilz S, Befroy D, et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem. 2004;279(31):32345–53.PubMedCrossRef Samuel VT, Liu Z-X, Qu X, Elder BD, Bilz S, Befroy D, et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem. 2004;279(31):32345–53.PubMedCrossRef
72.
Zurück zum Zitat Jornayvaz FR, Birkenfeld AL, Jurczak MJ, Kanda S, Guigni BA, Jiang DC. Hepatic insulin resistance in mice with hepatic overexpression of diacylglycerol acyltransferase 2. Proc Natl Acad Sci U S A. 2011;108(14):5748–52.PubMedCentralPubMedCrossRef Jornayvaz FR, Birkenfeld AL, Jurczak MJ, Kanda S, Guigni BA, Jiang DC. Hepatic insulin resistance in mice with hepatic overexpression of diacylglycerol acyltransferase 2. Proc Natl Acad Sci U S A. 2011;108(14):5748–52.PubMedCentralPubMedCrossRef
73.
Zurück zum Zitat Zhang L, Ussher JR, Oka T, Cadete VJJ, Wagg C, Lopaschuk GD. Cardiac diacylglycerol accumulation in high fat-fed mice is associated with impaired insulin-stimulated glucose oxidation. Cardiovasc Res. 2011;89(1):148–56.PubMedCrossRef Zhang L, Ussher JR, Oka T, Cadete VJJ, Wagg C, Lopaschuk GD. Cardiac diacylglycerol accumulation in high fat-fed mice is associated with impaired insulin-stimulated glucose oxidation. Cardiovasc Res. 2011;89(1):148–56.PubMedCrossRef
74.
Zurück zum Zitat Liu L, Shi X, Bharadwaj KG, Ikeda S, Yamashita H, Yagyu H, et al. DGAT1 expression increases heart triglyceride content but ameliorates lipotoxicity. J Biol Chem. 2009;284(52):36312–23.PubMedCentralPubMedCrossRef Liu L, Shi X, Bharadwaj KG, Ikeda S, Yamashita H, Yagyu H, et al. DGAT1 expression increases heart triglyceride content but ameliorates lipotoxicity. J Biol Chem. 2009;284(52):36312–23.PubMedCentralPubMedCrossRef
75.
Zurück zum Zitat Amati F. Revisiting the diacylglycerol-induced insulin resistance hypothesis. Obes Rev. 2012;13(21):40–50.PubMedCrossRef Amati F. Revisiting the diacylglycerol-induced insulin resistance hypothesis. Obes Rev. 2012;13(21):40–50.PubMedCrossRef
76.
Zurück zum Zitat Brown JM, Betters JL, Lord C, Ma Y, Han X, Yang K, et al. CGI-58 knockdown in mice causes hepatic steatosis but prevents diet-induced obesity and glucose intolerance. J Lipid Res. 2010;51(11):3306–15.PubMedCentralPubMedCrossRef Brown JM, Betters JL, Lord C, Ma Y, Han X, Yang K, et al. CGI-58 knockdown in mice causes hepatic steatosis but prevents diet-induced obesity and glucose intolerance. J Lipid Res. 2010;51(11):3306–15.PubMedCentralPubMedCrossRef
77.
Zurück zum Zitat Timmers S, Nabben M, Bosma M, van Bree B, Lenaers E, van Beurden D, et al. Augmenting muscle diacylglycerol and triacylglycerol content by blocking fatty acid oxidation does not impede insulin sensitivity. Proc Natl Acad Sci U S A. 2012;109(29):11711–6.PubMedCentralPubMedCrossRef Timmers S, Nabben M, Bosma M, van Bree B, Lenaers E, van Beurden D, et al. Augmenting muscle diacylglycerol and triacylglycerol content by blocking fatty acid oxidation does not impede insulin sensitivity. Proc Natl Acad Sci U S A. 2012;109(29):11711–6.PubMedCentralPubMedCrossRef
78.
Zurück zum Zitat Cantley JL, Yoshimura T, Camporez JPG, Zhang D, Jornayvaz FR, Kumashiro N, et al. CGI-58 knockdown sequesters diacylglycerols in lipid droplets/ER-preventing diacylglycerol-mediated hepatic insulin resistance. Proc Natl Acad Sci U S A. 2013;110(5):1869–74.PubMedCentralPubMedCrossRef Cantley JL, Yoshimura T, Camporez JPG, Zhang D, Jornayvaz FR, Kumashiro N, et al. CGI-58 knockdown sequesters diacylglycerols in lipid droplets/ER-preventing diacylglycerol-mediated hepatic insulin resistance. Proc Natl Acad Sci U S A. 2013;110(5):1869–74.PubMedCentralPubMedCrossRef
79.
Zurück zum Zitat Rando R, Young N. The stereospecific activation of protein kinase C. Biochem Biophys Res. 1984;122(2):818–23. Rando R, Young N. The stereospecific activation of protein kinase C. Biochem Biophys Res. 1984;122(2):818–23.
80.
Zurück zum Zitat Haemmerle G, Lass A, Zimmermann R, Gorkiewicz G, Meyer C, Rozman J, et al. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science. 2006;312(5774):734–7.PubMedCrossRef Haemmerle G, Lass A, Zimmermann R, Gorkiewicz G, Meyer C, Rozman J, et al. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science. 2006;312(5774):734–7.PubMedCrossRef
81.
Zurück zum Zitat Huijsman E, Van De Par C, Economou C, Van Der Poel C, Lynch GS, Schoiswohl G, et al. Adipose triacylglycerol lipase deletion alters whole body energy metabolism and impairs exercise performance in mice. Am J Clin Nutr. 2009;297:505–13. Huijsman E, Van De Par C, Economou C, Van Der Poel C, Lynch GS, Schoiswohl G, et al. Adipose triacylglycerol lipase deletion alters whole body energy metabolism and impairs exercise performance in mice. Am J Clin Nutr. 2009;297:505–13.
82.
Zurück zum Zitat Sitnick MT, Basantani MK, Cai L, Schoiswohl G, Yazbeck CF, Distefano G, et al. Skeletal muscle triacylglycerol hydrolysis does not influence metabolic complications of obesity. Diabetes. 2013;62(10):3350–61.PubMedCrossRef Sitnick MT, Basantani MK, Cai L, Schoiswohl G, Yazbeck CF, Distefano G, et al. Skeletal muscle triacylglycerol hydrolysis does not influence metabolic complications of obesity. Diabetes. 2013;62(10):3350–61.PubMedCrossRef
83.
Zurück zum Zitat Tuunanen H, Engblom E, Naum A, Någren K, Hesse B, Airaksinen KEJ, et al. Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure. Circulation. 2006;114(20):2130–7.PubMedCrossRef Tuunanen H, Engblom E, Naum A, Någren K, Hesse B, Airaksinen KEJ, et al. Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure. Circulation. 2006;114(20):2130–7.PubMedCrossRef
84.
Zurück zum Zitat Tamura Y, Tanaka Y, Sato F, Choi JB, Watada H, Niwa M, et al. Effects of diet and exercise on muscle and liver intracellular lipid contents and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab. 2005;90(6):3191–6.PubMedCrossRef Tamura Y, Tanaka Y, Sato F, Choi JB, Watada H, Niwa M, et al. Effects of diet and exercise on muscle and liver intracellular lipid contents and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab. 2005;90(6):3191–6.PubMedCrossRef
85.
Zurück zum Zitat Petersen KF, Dufour S, Befroy D, Lehrke M, Hendler RE, Shulman GI. Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes. Diabetes. 2005;54(3):603–8.PubMedCentralPubMedCrossRef Petersen KF, Dufour S, Befroy D, Lehrke M, Hendler RE, Shulman GI. Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes. Diabetes. 2005;54(3):603–8.PubMedCentralPubMedCrossRef
86.
Zurück zum Zitat Petersen KF, Dufour S, Morino K, Yoo PS, Cline GW, Shulman GI. Reversal of muscle insulin resistance by weight reduction in young, lean, insulin-resistant offspring of parents with type 2 diabetes. Proc Natl Acad Sci U S A. 2012;109(21):8236–40.PubMedCentralPubMedCrossRef Petersen KF, Dufour S, Morino K, Yoo PS, Cline GW, Shulman GI. Reversal of muscle insulin resistance by weight reduction in young, lean, insulin-resistant offspring of parents with type 2 diabetes. Proc Natl Acad Sci U S A. 2012;109(21):8236–40.PubMedCentralPubMedCrossRef
87.
Zurück zum Zitat Rabøl R, Petersen KF, Dufour S, Flannery C, Shulman GI. Reversal of muscle insulin resistance with exercise reduces postprandial hepatic de novo lipogenesis in insulin resistant individuals. Proc Natl Acad Sci U S A. 2011;108(33):13705–9.PubMedCentralPubMedCrossRef Rabøl R, Petersen KF, Dufour S, Flannery C, Shulman GI. Reversal of muscle insulin resistance with exercise reduces postprandial hepatic de novo lipogenesis in insulin resistant individuals. Proc Natl Acad Sci U S A. 2011;108(33):13705–9.PubMedCentralPubMedCrossRef
88.
Zurück zum Zitat Van der Meer RW, Hammer S, Lamb HJ, Frölich M, Diamant M, Rijzewijk LJ, et al. Effects of short-term high-fat, high-energy diet on hepatic and myocardial triglyceride content in healthy men. J Clin Endocrinol Metab. 2008;93(7):2702–8.PubMedCrossRef Van der Meer RW, Hammer S, Lamb HJ, Frölich M, Diamant M, Rijzewijk LJ, et al. Effects of short-term high-fat, high-energy diet on hepatic and myocardial triglyceride content in healthy men. J Clin Endocrinol Metab. 2008;93(7):2702–8.PubMedCrossRef
89.
Zurück zum Zitat Rasouli N, Raue U, Miles LM, Lu T, Di Gregorio GB, Elbein SC, et al. Pioglitazone improves insulin sensitivity through reduction in muscle lipid and redistribution of lipid into adipose tissue. Am J Physiol Endocrinol Metab. 2005;72205:930–4. Rasouli N, Raue U, Miles LM, Lu T, Di Gregorio GB, Elbein SC, et al. Pioglitazone improves insulin sensitivity through reduction in muscle lipid and redistribution of lipid into adipose tissue. Am J Physiol Endocrinol Metab. 2005;72205:930–4.
90.
Zurück zum Zitat Petersen KF, Krssak M, Inzucchi S, Cline GW, Dufour S, Shulman GI. Mechanism of troglitazone action in type 2 diabetes. Diabetes. 2000;49:827–31.PubMedCrossRef Petersen KF, Krssak M, Inzucchi S, Cline GW, Dufour S, Shulman GI. Mechanism of troglitazone action in type 2 diabetes. Diabetes. 2000;49:827–31.PubMedCrossRef
91.
Zurück zum Zitat Bajaj M, Suraamornkul S, Pratipanawatr T, Hardies LJ, Pratipanawatr W, Glass L, et al. Pioglitazone reduces hepatic fat content and augments splanchnic glucose uptake in patients with type 2 diabetes. Diabetes. 2003;52(6):1364–70.PubMedCrossRef Bajaj M, Suraamornkul S, Pratipanawatr T, Hardies LJ, Pratipanawatr W, Glass L, et al. Pioglitazone reduces hepatic fat content and augments splanchnic glucose uptake in patients with type 2 diabetes. Diabetes. 2003;52(6):1364–70.PubMedCrossRef
92.
Zurück zum Zitat Ravikumar B, Gerrard J, Man CD, Firbank MJ, Lane A, English PT, et al. Pioglitazone decreases fasting and postprandial endogenous glucose production in proportion to decrease in hepatic triglyceride content. Diabetes. 2008;57:2288–95.PubMedCentralPubMedCrossRef Ravikumar B, Gerrard J, Man CD, Firbank MJ, Lane A, English PT, et al. Pioglitazone decreases fasting and postprandial endogenous glucose production in proportion to decrease in hepatic triglyceride content. Diabetes. 2008;57:2288–95.PubMedCentralPubMedCrossRef
93.
Zurück zum Zitat Van der Meer RW, Rijzewijk LJ, de Jong HW, Lamb HJ, Lubberink M, Romijn JA, et al. Pioglitazone improves cardiac function and alters myocardial substrate metabolism without affecting cardiac triglyceride accumulation and high-energy phosphate metabolism in patients with well-controlled type 2 diabetes mellitus. Circulation. 2009;119(15):2069–77.PubMedCrossRef Van der Meer RW, Rijzewijk LJ, de Jong HW, Lamb HJ, Lubberink M, Romijn JA, et al. Pioglitazone improves cardiac function and alters myocardial substrate metabolism without affecting cardiac triglyceride accumulation and high-energy phosphate metabolism in patients with well-controlled type 2 diabetes mellitus. Circulation. 2009;119(15):2069–77.PubMedCrossRef
94.
Zurück zum Zitat Jankovic D, Winhofer Y, Promintzer-Schifferl M, Wohlschläger E, Anderwald CH, Wolf P, et al. Effects of insulin therapy on myocardial lipid content and cardiac geometry in patients with type-2 diabetes mellitus. PLoS One. 2012;7(12):1–7.CrossRef Jankovic D, Winhofer Y, Promintzer-Schifferl M, Wohlschläger E, Anderwald CH, Wolf P, et al. Effects of insulin therapy on myocardial lipid content and cardiac geometry in patients with type-2 diabetes mellitus. PLoS One. 2012;7(12):1–7.CrossRef
95.
Zurück zum Zitat Lingvay I, Raskin P, Szczepaniak LS. Effect of insulin and metformin combination on hepatic steatosis in type 2 diabetes: treatment of hepatic steatosis in diabetes. J Diabetes Complications. 2008;21(3):137–42.CrossRef Lingvay I, Raskin P, Szczepaniak LS. Effect of insulin and metformin combination on hepatic steatosis in type 2 diabetes: treatment of hepatic steatosis in diabetes. J Diabetes Complications. 2008;21(3):137–42.CrossRef
96.
Zurück zum Zitat Thamer C, Machann J, Bachmann O, Haap M, Dahl D, Wietek B, et al. Intramyocellular lipids: anthropometric determinants and relationships with maximal aerobic capacity and insulin sensitivity. J Clin Endocrinol Metab. 2003;88(4):1785–91.PubMedCrossRef Thamer C, Machann J, Bachmann O, Haap M, Dahl D, Wietek B, et al. Intramyocellular lipids: anthropometric determinants and relationships with maximal aerobic capacity and insulin sensitivity. J Clin Endocrinol Metab. 2003;88(4):1785–91.PubMedCrossRef
97.
Zurück zum Zitat Goodpaster BH, He J, Watkins S, Kelley DE. Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab. 2001;86(12):5755–61.PubMedCrossRef Goodpaster BH, He J, Watkins S, Kelley DE. Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab. 2001;86(12):5755–61.PubMedCrossRef
98.
Zurück zum Zitat Bergman BC, Hunerdosse DM, Kerege A, Playdon MC, Perreault L. Localisation and composition of skeletal muscle diacylglycerol predicts insulin resistance in humans. Diabetologia. 2012;55(4):1140–50.PubMedCentralPubMedCrossRef Bergman BC, Hunerdosse DM, Kerege A, Playdon MC, Perreault L. Localisation and composition of skeletal muscle diacylglycerol predicts insulin resistance in humans. Diabetologia. 2012;55(4):1140–50.PubMedCentralPubMedCrossRef
99.
Zurück zum Zitat Szendroedi J, Schmid AI, Chmelik M, Toth C, Brehm A, Krssak M, et al. Muscle mitochondrial ATP synthesis and glucose transport/phosphorylation in type 2 diabetes. PLoS Med. 2007;4(5):e154.PubMedCentralPubMedCrossRef Szendroedi J, Schmid AI, Chmelik M, Toth C, Brehm A, Krssak M, et al. Muscle mitochondrial ATP synthesis and glucose transport/phosphorylation in type 2 diabetes. PLoS Med. 2007;4(5):e154.PubMedCentralPubMedCrossRef
100.
Zurück zum Zitat Schmid AI, Szendroedi J, Chmelik M, Krssák M, Moser E, Roden M. Liver ATP synthesis is lower and relates to insulin sensitivity in patients with type 2 diabetes. Diabetes Care. 2011;34(2):448–53.PubMedCentralPubMedCrossRef Schmid AI, Szendroedi J, Chmelik M, Krssák M, Moser E, Roden M. Liver ATP synthesis is lower and relates to insulin sensitivity in patients with type 2 diabetes. Diabetes Care. 2011;34(2):448–53.PubMedCentralPubMedCrossRef
101.
Zurück zum Zitat Szendroedi J, Chmelik M, Schmid AI, Nowotny P, Brehm A, Krssak M, et al. Abnormal hepatic energy homeostasis in type 2 diabetes. Hepatology. 2009;50(4):1079–86.PubMedCrossRef Szendroedi J, Chmelik M, Schmid AI, Nowotny P, Brehm A, Krssak M, et al. Abnormal hepatic energy homeostasis in type 2 diabetes. Hepatology. 2009;50(4):1079–86.PubMedCrossRef
102.
Zurück zum Zitat Franko A, von Kleist-Retzow J-C, Neschen S, Wu M, Schommers P, Böse M, et al. Liver adapts mitochondrial function to insulin resistant and diabetic states in mice. J Hepatol. 2014;60(4):816–23.PubMedCrossRef Franko A, von Kleist-Retzow J-C, Neschen S, Wu M, Schommers P, Böse M, et al. Liver adapts mitochondrial function to insulin resistant and diabetic states in mice. J Hepatol. 2014;60(4):816–23.PubMedCrossRef
103.
Zurück zum Zitat Sunny NE, Parks EJ, Browning JD, Burgess SC. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab. 2011;14(6):804–10. Sunny NE, Parks EJ, Browning JD, Burgess SC. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab. 2011;14(6):804–10.
104.
Zurück zum Zitat Johnson NA, Walton DW, Sachinwalla T, Thompson CH, Smith K, Ruell PA, et al. Noninvasive assessment of hepatic lipid composition: advancing understanding and management of fatty liver disorders. Hepatology. 2008;47(5):1513–23.PubMedCrossRef Johnson NA, Walton DW, Sachinwalla T, Thompson CH, Smith K, Ruell PA, et al. Noninvasive assessment of hepatic lipid composition: advancing understanding and management of fatty liver disorders. Hepatology. 2008;47(5):1513–23.PubMedCrossRef
105.
Zurück zum Zitat De Wit NJW, Afman LA, Mensink M, Müller M. Phenotyping the effect of diet on non-alcoholic fatty liver disease. J Hepatol. 2012;57:1370–3.PubMedCrossRef De Wit NJW, Afman LA, Mensink M, Müller M. Phenotyping the effect of diet on non-alcoholic fatty liver disease. J Hepatol. 2012;57:1370–3.PubMedCrossRef
106.
Zurück zum Zitat Allard JP, Aghdassi E, Mohammed S, Raman M, Avand G, Arendt BM, et al. Nutritional assessment and hepatic fatty acid composition in non-alcoholic fatty liver disease (NAFLD): a cross-sectional study. J Hepatol. 2008;48(2):300–7.PubMedCrossRef Allard JP, Aghdassi E, Mohammed S, Raman M, Avand G, Arendt BM, et al. Nutritional assessment and hepatic fatty acid composition in non-alcoholic fatty liver disease (NAFLD): a cross-sectional study. J Hepatol. 2008;48(2):300–7.PubMedCrossRef
107.
Zurück zum Zitat De Wit N, Derrien M, Bosch-Vermeulen H, Oosterink E, Keshtkar S, Duval C, et al. Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine. Am J Physiol Gastrointest Liver Physiol. 2012;303(5):G589–99. De Wit N, Derrien M, Bosch-Vermeulen H, Oosterink E, Keshtkar S, Duval C, et al. Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine. Am J Physiol Gastrointest Liver Physiol. 2012;303(5):G589–99.
108.
Zurück zum Zitat Bjermo H, Iggman D, Kullberg J, Dahlman I, Johansson L, Persson L, et al. Effects of n-6 PUFAs compared with SFAs on liver fat, lipoproteins, and inflammation in abdominal obesity: a randomized controlled trial. Am J Clin Nutr. 2012;95:1003–12.PubMedCrossRef Bjermo H, Iggman D, Kullberg J, Dahlman I, Johansson L, Persson L, et al. Effects of n-6 PUFAs compared with SFAs on liver fat, lipoproteins, and inflammation in abdominal obesity: a randomized controlled trial. Am J Clin Nutr. 2012;95:1003–12.PubMedCrossRef
109.
Zurück zum Zitat Rosqvist F, Iggman D, Kullberg J, Jonathan Cedernaes J, Johansson H-E, Larsson A, et al. Overfeeding polyunsaturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans. Diabetes. 2014;63(7):2356–68. Rosqvist F, Iggman D, Kullberg J, Jonathan Cedernaes J, Johansson H-E, Larsson A, et al. Overfeeding polyunsaturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans. Diabetes. 2014;63(7):2356–68.
110.
Zurück zum Zitat Jans A, Konings E, Goossens GH, Bouwman FG, Moors CC, Boekschoten MV, et al. PUFAs acutely affect triacylglycerol-derived skeletal muscle fatty acid uptake and increase postprandial insulin sensitivity. Am J Clin Nutr. 2012;95:825–36.PubMedCrossRef Jans A, Konings E, Goossens GH, Bouwman FG, Moors CC, Boekschoten MV, et al. PUFAs acutely affect triacylglycerol-derived skeletal muscle fatty acid uptake and increase postprandial insulin sensitivity. Am J Clin Nutr. 2012;95:825–36.PubMedCrossRef
111.
Zurück zum Zitat Russo SB, Baicu CF, Van Laer A, Geng T, Kasiganesan H, Zile MR, et al. Ceramide synthase 5 mediates lipid-induced autophagy and hypertrophy in cardiomyocytes. J Clin Invest. 2012;122(11):3919–30. Russo SB, Baicu CF, Van Laer A, Geng T, Kasiganesan H, Zile MR, et al. Ceramide synthase 5 mediates lipid-induced autophagy and hypertrophy in cardiomyocytes. J Clin Invest. 2012;122(11):3919–30.
112.
Zurück zum Zitat Duda MK, O’Shea KM, Stanley WC. Omega-3 polyunsaturated fatty acid supplementation for the treatment of heart failure: mechanisms and clinical potential. Cardiovasc Res. 2009;84(1):33–41.PubMedCentralPubMedCrossRef Duda MK, O’Shea KM, Stanley WC. Omega-3 polyunsaturated fatty acid supplementation for the treatment of heart failure: mechanisms and clinical potential. Cardiovasc Res. 2009;84(1):33–41.PubMedCentralPubMedCrossRef
113.
Zurück zum Zitat Estruch R, Ros E, Salas-Salvadó J, Covas M-I, Corella D, et al. Primary prevention of cardiovascular disease with a mediterranean diet. N Engl J Med. 2013;368(14):1279–90. Estruch R, Ros E, Salas-Salvadó J, Covas M-I, Corella D, et al. Primary prevention of cardiovascular disease with a mediterranean diet. N Engl J Med. 2013;368(14):1279–90.
Metadaten
Titel
Intracellular lipid accumulation and shift during diabetes progression
verfasst von
Peter Wolf, MD
Yvonne Winhofer, MD, PhD
Mag. pharm. Christian-Heinz Anderwald, MD
Martin Krššák, PhD
Michael Krebs, MD
Publikationsdatum
01.08.2014
Verlag
Springer Vienna
Erschienen in
Wiener Medizinische Wochenschrift / Ausgabe 15-16/2014
Print ISSN: 0043-5341
Elektronische ISSN: 1563-258X
DOI
https://doi.org/10.1007/s10354-014-0292-y

Weitere Artikel der Ausgabe 15-16/2014

Wiener Medizinische Wochenschrift 15-16/2014 Zur Ausgabe