Skip to main content
Erschienen in:

22.02.2024 | Hygiene- und Umweltmedizin | main topic

Avicenna’s views on pest control and medicinal plants he prescribed as natural pesticides

verfasst von: Mohammad Amrollahi-Sharifabadi, Jamal Rezaei Orimi, Zahra Adabinia, Tahereh Shakeri, Zahra Aghabeiglooei, Mohammad Hashemimehr, Maedeh Rezghi, PhD

Erschienen in: Wiener Medizinische Wochenschrift | Ausgabe 13-14/2024

Summary

The present study aimed to introduce Avicenna’s views on pest control and the medicinal plants he proposed as natural pesticides. Also, we addressed the strategies that he leveraged to formulate and prescribe them, and, finally, we put his views into perspective with modern science. The data were collected using Al-Qanun Fi Al-Tibb (The Canon of Medicine) as well as scientific databases. According to Al-Qanun Fi Al-Tibb, 42 medicinal plants are described as natural pest control agents. After introducing the pest control properties of each plant, Avicenna explained the appropriate strategies for use of these plants. These strategies or formulations included incensing, spraying, spreading, rubbing, smudging, and scent-dispersing, which are equivalent to the modern pesticide formulations of fumigants, aerosols, pastes and poisoned baits, lotions, creams, and slow-release formulations, respectively. This study revealed that Avicenna introduced the pest control approach with natural plants in his book Al-Qanun Fi Al-Tibb and, thus, harnessed the power of nature to control nature. Future research is recommended to find the pest control merits of the presented medicinal plants, in order to incorporate them into pest control programs and reduce environmental pollution resulting from the complications of current synthetic pesticides.
Hinweise

Declaration of generative AI and AI-assisted technologies

Authors disclose that they did not use generative artificial intelligence (AI) or AI-assisted technologies during the preparation of this manuscript.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

The use of natural pest control agents against different parasites and insects has a very long history in human life. Humans have been using natural pesticides to protect their products since 2000 BC [1]. The use of toxic plants as insecticides is mentioned in the Indian book The Rig Veda, which is about 4000 years old [2]. Today, various types of chemical pesticides and insecticides are used to control pests, many of which are harmful to the health of the environment, animals, and humans [3, 4]. The health impacts of pesticides range from contamination of water resources and organic products to a variety of human health complications, from cognitive disorders to cancer [5, 6]. Recently, research has been increasing on the revision of methods for controlling pests—in an effort to prevent the excessive use of chemical poisons—and a tendency to use safer pest controllers, including natural pesticides, is emerging [7, 8]. As noted by current literature, Persian medicine (PM) resources have a rich background in medical practice as well as a wealth of knowledge [9, 10]. One of the most important Persian medical books in the field of effective medicinal plants as natural remedies is Al-Qanun Fi Al-Tibb, commonly known as The Canon of Medicine in English literature, authored by the famous Persian physician and scientist Abu Ali Sina, also known as Ibn Sina or Avicenna (980-1037 AD) [11]. We aimed to investigate the medicinal plants recommended in Avicenna’s Al-Qanun Fi Al-Tibb as pest control agents and his recommended applications, as well as to put the data in light of modern knowledge.

Materials and methods

We explored Al-Qanun Fi Al-Tibb using the keywords of Al-Sam, Al-Nahš, Las’a, Al-Havām, Al-Somum Al-Hayavānia, Al-Advia Al-Nāfea Al-somum, and Taryāq in Arabic, which are equivalent to poison, bite, sting, vermin, zootoxins, antitoxins, and antidotes in English [12]. Then, to compare and probe the compatibility of the extracted information with modern knowledge of pest control, current literature investigated in PubMed, Scopus, Google Scholar, Web of Science, and related Iranian English scientific databases including Scientific Information Database (SID), Magiran, IranDoc, and Iranmedex. Finally, the obtained results were analyzed, categorized, and presented in this article.

Results

Medicinal plants introduced as pesticides in Avicenna’s Al-Qanun Fi Al-Tibb

Based on the results obtained from this research, 42 medicinal plants were discoursed by Avicenna in Al-Qanun Fi Al-Tibb as natural pesticides to control insect pests and vermin (Figs. 1, 2 and 3, Table 1; [12]).
Table 1
Botanical pesticides in Avicenna’s Al-Qanun fi Al-Tibb in perspective with modern pest control science
No
Common name
Traditional name
Scientific name
Avicenna’s prescription (pesticide formulation)
Modern pest control science
Description
Incensing agents (Al-Bokhours)
Decoction spray agents (Al-Tabikhs)
Spreadable agents (Al-Efterashs)
Rubbing agents (Al-Taliyes or Al-Telas)
Smudging agents (Al-Latoukhs)
Scent-dispersing agents (Al-Taqtiris)
Pesticidal activity studies
1
Glasswort
Ošnān
Salicornia herbacea L.
Its smoke repels insects
×
[26]
[27]
[28]
2
Felty germander
Jada
Teucrium polium L.
If they smoke it and leave it in the house, it will drive away insects
×
[29]
[30]
[31]
3
‏Garden cress
Horof
Lepidium sativum L.
If they burn this plant, insects will escape from its smoke
×
[32]
[33]
[34]
4
‏Black cumin
Šhuniz
Nigella sativa L.
Insects escape from its smoke
×
×
[35]
[36]
5
Florentine Iris
Susan
Iris florentina L.
Its smoke is a medicine to avoid vermin and stay safe from the danger of vermin bites
×
[37]
6
Myrtle
Ās
Myrtus communis L.
Mosquitoes escape from its smoke
×
[38]
[39]
7
Guggul
Moql
Commiphora mukul Engl
Mosquitoes escape from its smoke
×
[40]
8
Garlic
Sum
Allium sativum L.
Wasps escape from its smoke
×
[41]
[42]
9
‏Oriental plane tree
Delb
Platanus orientalis L.
Burning and smoking its wood and leaves will make the insects escape
×
[43]
[44]
10
Pomegranate
Anār
Punica granatum
Mosquitoes escape from its smoke
×
[45]
[46]
[47]
11
Sagapenum
Sakbinaj
Ferula persica
Wasps escape from its smoke
×
[48]
[49]
12
Chinaberry tree
Āzād derakht
Melia azedarach L.
The juice of its leaves is an insect killer
×
[50]
[51]
13
Alkanet
Abukhalsā
Alkanna tinctoria (L.) Tausch
If the ripe fruit and yellow leaves are made into a powder and sprayed on the insect, will kill the insect
×
[52]
[53]
14
‏Caltrop
Hasak
Tribulus terrestris L.
Splashing boiled it causes to kill fleas
×
[54]
[55]
15
‏Carob
Yanbut
Ceratonia siliqua L.
Cooking it in water and spraying it in the house will make fleas escape
×
[56]
16
Euphorbia
Farbiyun
Euphorbia helioscopia L.
If the powder of this plant is sprinkled on someone’s head, he/she will be safe from vermin and insect bites
×
[57]
17
Black berry
Aliq
Rubus fruticosus L.
Cooking its bark or whole plant in water and spraying it in the house will make fleas escape
×
[58]
18
‏Bitter cucumber
Hanzal
Citrullus colocynthis (L.) Schrad
Soaking it in water and sprinkling it in the house will make fleas escape
×
[59]
[60]
19
Hellebore
Xarbaq
Helleborus niger L.
Its decoction kills flies
×
[61]
20
Absinthium
Afsantin
Artemisia absinthium
Splashing boiled it causes to kill fleas
×
[62]
21
Lupine
Termes
Lupinus termis L.
Splashing boiled it causes to kill fleas
×
[63]
22
Citron
Bālang
Citrus medica L.
If its dry skin is with the clothes, they are safe from insects such as moth
×
[64]
23
‏Broad-leaved thyme
Nammām
Thymus pulegioides L.
Placing it around the bed will keep insects away
×
[65]
24
‏Worm wood
Qeysum
Artemisia montana (Nakai) Pamp
If they use it as a carpet, it will repel insects
×
[66]
25
‏Ammoniacum
Ošaq
Dorema ammoniacum (D. Don)
If they apply it on the body, vermin will not come near
×
[67]
26
Marsh Mallow
Xatmi
Althea officinalis L.
If someone rubs this plant on his/her body, wasp will not come near to his/her
×
[68]
27
‏Olive
Zeytun
Olea europaea L.
If someone applies this oil to his/her body, wasp will not come near his/her body
×
[69]
28
Radish
Fojol
Raphanus Sativus L.
Rubbing this oil on the body prevents mosquitoes from approaching humans
×
[70]
29
Branched asphodel
Barvaq
Asphodelus ramosus L.
If they apply it on the body, vermin will not come near
×
[71]
30
‏Italian arum
Luf
Arum italicum L.
If someone rubs his/her body with it or its extract or decoction, is safe from vermin bites
×
[72]
31
Chaste tree
Panjangošt
Vitex agnus-castus L.
Smoking the leaf and also rubbing its leaf mixture in olive oil makes the vermin run away
×
×
×
[73]
32
‏Common juniper
Ar’ar’
Juniperus communis L.
The smoke of its wood, fruit, and leaves repels insects and flies. Also, rubbing the mixture of its leaves in olive oil will protect you from harmful animals
×
×
[74]
33
European pennyroyal
Fudanj
Mentha Pulegium L.
To smoke of its leaves, repel insects. Spreading its leaves is also an enemy of harmful insects
×
×
[75]
34
Galbanum
Qenna
Ferula galbaniflua Boiss. et Buhse
Its smoke repels harmful insects
×
×
[76]
35
Rue
Sodāb
Ruta graveolens L.
Vermin run away from its smell. Cooking it in water and sprinkling it in the house will keep mosquitoes away
×
×
[77]
36
‏Norway spruce
Senowbar
Picea abies (L.) Karst
The smoke caused by burning its powdered bark and pouring it around the room causes insects to escape. Rubbing a mixture of its green leaves and olive oil on the body cause to protect from harmful animals
×
×
×
×
[78]
37
Wild rue
Esfand
Peganum harmala L.
Mosquitos escape from its smoke
×
×
×
[79]
38
Cypress tree
Sarv
Cupressus sempervirens L.
Its leaves and fruit repel mosquitoes. Rubbing the mixture of its fresh fruit blossoms in olive oil cause to repel vermin
×
×
[80]
39
Ferula
Anghozeh
Ferula assafoetida L.
Pouring its gum into the nest of ants will evacuate the nest and also make the insects go away
×
×
×
[81]
[82]
40
‏Bay laurel
Qār
Laurus nobilis L.
Parts of this tree keep insects away
×
×
[83]
41
Oleander
Defli
Nerium oleander L.
Fleas are afraid of its smell and run away from it
×
×
[84]
42
Wormseed
Šeih
Artemisia cina Berg ex Poljakov
Mosquitoes escape from its smoke
×
×
[85]

Types of strategies (formulations) for pesticide applications in Avicenna’s Al-Qanun Fi Al-Tibb

Avicenna proposed various methods of using medicinal plants to repel and kill insects and vermin. The methods of using these pesticide agents are smoking and burning (incensing), rubbing on the human body, smearing the walls of the rooms and windows, spraying, spreading, and expanding in the place. These pest control agents can scare off or destroy different kinds of insects and vermin ([12]; Table 1).

Incensing agents (Al-Bokhours)

Incenses are pesticides that destroy pests including insects and vermin after burning and spreading their smoke in the place. These pesticides include pomegranate (Punica granatum), chaste tree (Vitex agnus-castus L.), felty germander (Teucrium polium L.), garden cress (Lepidium sativum L.), common juniper (Juniperus communis L.), European pennyroyal (Mentha Pulegium L.), galbanum (Ferula galbaniflua), black cumin (Nigella sativa L.), florentine Iris (Iris florentina L.), guggul (Commiphora mukul), and bay laurel (Laurus nobilis L.) [12].

Decoction spray agents (Al-Tabikhs)

In this strategy, the decoctions (boiled extracts) of medicinal plants are sprayed on the pest to make physical contact with it. The medicinal plants included wild rue (Peganum harmala L.) and galbanum (Ferula galbaniflua). Also, the decoction of hellebore (Helleborus niger L.) kills flies and the spray of decoction of caltrop (Ceratonia siliqua L.) repels fleas. Spraying the decoction of plants such as black cumin (Nigella sativa L.) and rue (Ruta graveolens L.) repels mosquitoes. Spraying the decoction of galbanum (Ferula galbaniflua) is recommended to keep vermin away [12].

Spreadable agents (Al-Efterashs)

Avicenna prescribed some medicinal plants as spreading and expanding formulations for controlling pests. For example, placing broad-leaved thyme (Thymus pulegioides L.), ferula (Ferula Assa foetida L.), bay laurel (Laurus nobilis L.), and Norway spruce (Picea abies (L.) Karst) around the environments especially the beds and beddings in the house were useful strategies to control pests [12].

Rubbing agents (Al-Taliyes or Al-Telas)

Rubbing the diluted extracts of some parts of the medicinal plants on the body kept harmful pests away (equivalent to body lotion). Among the medicinal plants that Avicenna prescribed were the oil of radish (Raphanus Sativus L.), the fresh blossoms and the fruits of the cypress tree (Cuperessus sempervirens L.), the fruits of the common juniper (Juniperus communis L.), and the leaves of the chaste tree (Vitex agnus-castus L.) [12].

Smudging agents (Al-Latoukhs)

In Avicenna’s view, smudging means coating the body with something thicker than the rubbing drugs but thinner than poultices (equivalent to body cream). According to the Al-Qanun Fi Al-Tibb, if someone covered the body with a large Italian arum (Arum italicum L.) and its extract or decoction, they would be protected against vermin bites [12].

Scent-dispersing agents (Al-Taqtiris)

Avicenna also advocated using the fragrances of some medicinal plants to ward off pests like insects. As an example, he suggested that the scent of oleander (Nerium oleander L.) might drive fleas away [12].

Discussion and conclusion

Pest control via natural agents has a very important role in human health and life [13]. Although humankind has been using natural pesticides for a very long time to protect himself and his crops, with industrial development, different types of chemical pesticides are synthesized to use to repel or destroy different harmful pests including animals and insects [14, 15]. Recent studies have shown that constant use of these agents has resulted in detrimental consequences for humans and animals [16, 17]. In addition, continuous use of these types of toxic substances has directly polluted our available life resources such as water, air, and the environment, and threatened biodiversity [18, 19]. Even if all the safety principles are observed during application of these chemical pesticides, it is not possible to prevent the entry of these agents into water, air, soil, and the environment and prevent their toxicities and impacts on life forms [20]. However, one strategy to reduce the burden of complications of these agents can be using safer, more ecofriendly agents such as botanical pesticides [21, 22].
The sources of PM like Ibn Sina’s Al-Qanun Fi Al-Tibb have been used for centuries as a reference for medical knowledge, human health, and environmental sciences. Ibn Sina discussed the botanical pesticides and their formulations for pest control in the fourth volume of Al-Qanun Fi Al-Tibb [12, 23]. The present study revealed that Ibn Sina was cognizant of the importance of pest control for ensuring health and thus tried to control pests by prescribing natural agents. He prescribed medicinal plants to control pests. These natural agents that were used against different pests included 42 botanical agents.
Also, this study showed that Avicenna in Al-Qanun Fi Al-Tibb described the formulations for pest control agents. Primarily, the purpose of pesticide formulation is to facilitate transportation and application, modify properties, and increase the effect on pests while reducing damage to the health of humans, animals, and the environment [24, 25]. Incensing agents (Al-Bokhours), decoction spray agents (Al-Tabikhs), spreadable agents (Al-Efterashs), rubbing agents (Al-Taliyes or Al-Telas), smudging agents (Al-Latoukhs), and scent-dispersing agents (Al-Taqtiris) in Al-Qanun Fi Al-Tibb can be considered as equivalents of fumigants, aerosols, pastes and poisoned baits, lotion, cream, and slow-release formulations in today’s formulations, respectively.
By considering the many adverse effects and toxicities of today’s chemical pesticide agents, it is recommended to conduct more research on the usability and efficacy of natural agents such as medicinal plants for consumption as pesticides. Accordingly, with increasing scientific corroborating evidence in relation to the beneficial effects of medicinal plants as natural pesticide agents on the one hand and reducing the use of synthetic chemical compounds as pesticides on the other, we will be able to reduce the adverse consequences of pesticides and their toxicities to humans, wildlife, and the environment. Caution should always be exercised when using natural remedies, and indiscriminate use or failure to follow safe use instructions is never recommended. This study revealed that even in the Middle Ages, natural remedies such as medicinal plants were prescribed and used under the supervision of experts like Avicenna.

Funding

We would like to thank Babol University of Medical Sciences for financial support.

Declarations

Conflict of interest

M. Amrollahi-Sharifabadi, J. Rezaei Orimi, Z. Adabinia, T. Shakeri, Z. Aghabeiglooei, M. Hashemimehr and M. Rezghi declare that they have no competing interests.

Ethical standards

This study was registered under the ethical code IR.MUBABOL.HRI.REC.1401.040 in the Ethics Committee of Babol University of Medical Sciences.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

Abo für kostenpflichtige Inhalte

Literatur
1.
Zurück zum Zitat Chadha PP. Evaluation of genotoxicity in pesticide distributors of Punjab. J Life Sci. 2013;5:17–22. Chadha PP. Evaluation of genotoxicity in pesticide distributors of Punjab. J Life Sci. 2013;5:17–22.
2.
Zurück zum Zitat Himani PU, Mahawer SK, Kumar R, et al. Plant protection through agrochemicals and its consequences. Plant protection: from chemicals to biologicals. 2022. p. 25.CrossRef Himani PU, Mahawer SK, Kumar R, et al. Plant protection through agrochemicals and its consequences. Plant protection: from chemicals to biologicals. 2022. p. 25.CrossRef
3.
Zurück zum Zitat Tănăsescu E‑C, Lite M‑C. Harmful health effects of pesticides used on museum textile artifacts-overview. Ecotoxicol Environ Saf. 2022;247:114240.PubMedCrossRef Tănăsescu E‑C, Lite M‑C. Harmful health effects of pesticides used on museum textile artifacts-overview. Ecotoxicol Environ Saf. 2022;247:114240.PubMedCrossRef
4.
Zurück zum Zitat Fu H, Tan P, Wang R, et al. Advances in organophosphorus pesticides pollution: current status and challenges in ecotoxicological, sustainable agriculture, and degradation strategies. J Hazard Mater. 2022;424:127494.PubMedCrossRef Fu H, Tan P, Wang R, et al. Advances in organophosphorus pesticides pollution: current status and challenges in ecotoxicological, sustainable agriculture, and degradation strategies. J Hazard Mater. 2022;424:127494.PubMedCrossRef
5.
Zurück zum Zitat Schleiffer M, Speiser B. Presence of pesticides in the environment, transition into organic food, and implications for quality assurance along the European organic food chain—a review. Environ Pollut. 2022;120116. Schleiffer M, Speiser B. Presence of pesticides in the environment, transition into organic food, and implications for quality assurance along the European organic food chain—a review. Environ Pollut. 2022;120116.
6.
Zurück zum Zitat Arab A, Mostafalou S. Neurotoxicity of pesticides in the context of CNS chronic diseases. Int J Environ Health Res. 2022;32:2718–55.PubMedCrossRef Arab A, Mostafalou S. Neurotoxicity of pesticides in the context of CNS chronic diseases. Int J Environ Health Res. 2022;32:2718–55.PubMedCrossRef
7.
Zurück zum Zitat Acheuk F, Basiouni S, Shehata AA, et al. Status and prospects of botanical biopesticides in Europe and Mediterranean countries. Biomolecules. 2022;12:311.PubMedPubMedCentralCrossRef Acheuk F, Basiouni S, Shehata AA, et al. Status and prospects of botanical biopesticides in Europe and Mediterranean countries. Biomolecules. 2022;12:311.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Ngegba PM, Cui G, Khalid MZ, et al. Use of botanical pesticides in agriculture as an alternative to synthetic pesticides. Agriculture. 2022;12:600.CrossRef Ngegba PM, Cui G, Khalid MZ, et al. Use of botanical pesticides in agriculture as an alternative to synthetic pesticides. Agriculture. 2022;12:600.CrossRef
9.
Zurück zum Zitat Nasiri E, Orimi JR, Hashemimehr M, et al. Avicenna’s clinical toxicology approach and beneficial materia medica against oral poisoning. Arch Toxicol. 2023;97:981–9.PubMedCrossRef Nasiri E, Orimi JR, Hashemimehr M, et al. Avicenna’s clinical toxicology approach and beneficial materia medica against oral poisoning. Arch Toxicol. 2023;97:981–9.PubMedCrossRef
10.
Zurück zum Zitat Samarrai R, Radwan T, Samarrai M, et al. An analysis of otolaryngology in avicenna’s canon of medicine: utilizing the original Arabic text. Otolaryngol Head Neck Surg. 2023;. Samarrai R, Radwan T, Samarrai M, et al. An analysis of otolaryngology in avicenna’s canon of medicine: utilizing the original Arabic text. Otolaryngol Head Neck Surg. 2023;.
12.
Zurück zum Zitat Ibn-e-Sina A. Al-Qānūn fī al-Tibb (Canon of Medicine). Beirut: Dare Ehyae al-Torathe al-Arabi; 2005. Ibn-e-Sina A. Al-Qānūn fī al-Tibb (Canon of Medicine). Beirut: Dare Ehyae al-Torathe al-Arabi; 2005.
13.
Zurück zum Zitat Ujváry I. Pest control agents from natural products. In: Hayes’ Handbook of Pesticide Toxicology Elsevier; 2010. pp. 119–229.CrossRef Ujváry I. Pest control agents from natural products. In: Hayes’ Handbook of Pesticide Toxicology Elsevier; 2010. pp. 119–229.CrossRef
14.
Zurück zum Zitat Osborn D. Pesticides in modern agriculture. Environ Impacts Mod Agric. 2012;34:111.CrossRef Osborn D. Pesticides in modern agriculture. Environ Impacts Mod Agric. 2012;34:111.CrossRef
16.
Zurück zum Zitat Keswani C, Dilnashin H, Birla H, et al. Global footprints of organochlorine pesticides: a pan-global survey. Environ Geochem Health. 2022; 1–29. Keswani C, Dilnashin H, Birla H, et al. Global footprints of organochlorine pesticides: a pan-global survey. Environ Geochem Health. 2022; 1–29.
17.
Zurück zum Zitat Parra-Arroyo L, González-González RB, Castillo-Zacarías C, et al. Highly hazardous pesticides and related pollutants: toxicological, regulatory, and analytical aspects. Sci Total Environ. 2022;807:151879.PubMedCrossRef Parra-Arroyo L, González-González RB, Castillo-Zacarías C, et al. Highly hazardous pesticides and related pollutants: toxicological, regulatory, and analytical aspects. Sci Total Environ. 2022;807:151879.PubMedCrossRef
18.
Zurück zum Zitat Zaller JG, Kruse-Plaß M, Schlechtriemen U, et al. Pesticides in ambient air, influenced by surrounding land use and weather, pose a potential threat to biodiversity and humans. Sci Total Environ. 2022;838:156012.PubMedPubMedCentralCrossRef Zaller JG, Kruse-Plaß M, Schlechtriemen U, et al. Pesticides in ambient air, influenced by surrounding land use and weather, pose a potential threat to biodiversity and humans. Sci Total Environ. 2022;838:156012.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Intisar A, Ramzan A, Sawaira T, et al. Occurrence, toxic effects, and mitigation of pesticides as emerging environmental pollutants using robust nanomaterials—a review. Chemosphere. 2022;293:133538.PubMedCrossRef Intisar A, Ramzan A, Sawaira T, et al. Occurrence, toxic effects, and mitigation of pesticides as emerging environmental pollutants using robust nanomaterials—a review. Chemosphere. 2022;293:133538.PubMedCrossRef
22.
Zurück zum Zitat Silva V, Yang X, Fleskens L, et al. Environmental and human health at risk—scenarios to achieve the farm to fork 50 % pesticide reduction goals. Environ Int. 2022;165:107296.PubMedCrossRef Silva V, Yang X, Fleskens L, et al. Environmental and human health at risk—scenarios to achieve the farm to fork 50 % pesticide reduction goals. Environ Int. 2022;165:107296.PubMedCrossRef
27.
Zurück zum Zitat Toghueo RMK, Boyom FF. Endophytic penicillium species and their agricultural, biotechnological, and pharmaceutical applications. Biotech. 2020;10:107. Toghueo RMK, Boyom FF. Endophytic penicillium species and their agricultural, biotechnological, and pharmaceutical applications. Biotech. 2020;10:107.
28.
Zurück zum Zitat Todorović M, Zlatić N, Bojović B, et al. Biological properties of selected amaranthaceae halophytic species: a review. Brazilian J Pharm Sci. 2023;58. Todorović M, Zlatić N, Bojović B, et al. Biological properties of selected amaranthaceae halophytic species: a review. Brazilian J Pharm Sci. 2023;58.
29.
Zurück zum Zitat Tahghighi A, Ghafari S, Ghanavati S, et al. Repellency of aerial parts of teucrium polium L. essential oil formulation against anopheles stephensi. Int J Trop Insect Sci. 2022;42:3541–50.CrossRef Tahghighi A, Ghafari S, Ghanavati S, et al. Repellency of aerial parts of teucrium polium L. essential oil formulation against anopheles stephensi. Int J Trop Insect Sci. 2022;42:3541–50.CrossRef
30.
Zurück zum Zitat Ebadollahi A, Taghinezhad E. Modeling and optimization of the insecticidal effects of teucrium polium L. essential oil against red flour beetle (tribolium castaneum herbst) using response surface methodology. Inf Process Agric. 2020;7:286–93. Ebadollahi A, Taghinezhad E. Modeling and optimization of the insecticidal effects of teucrium polium L. essential oil against red flour beetle (tribolium castaneum herbst) using response surface methodology. Inf Process Agric. 2020;7:286–93.
31.
Zurück zum Zitat Khani A, Heydarian M. Fumigant and repellent properties of sesquiterpene-rich essential oil from teucrium polium subsp. capitatum (L.). Asian Pac J Trop Med. 2014;7:956–61.PubMedCrossRef Khani A, Heydarian M. Fumigant and repellent properties of sesquiterpene-rich essential oil from teucrium polium subsp. capitatum (L.). Asian Pac J Trop Med. 2014;7:956–61.PubMedCrossRef
32.
Zurück zum Zitat Radwan H, El-Missiry M, Al-Said W, et al. Investigation of the glucosinolates of Lepidium sativum growing in Egypt and their biological activity. Res J Med Med Sci. 2007;2:127–32. Radwan H, El-Missiry M, Al-Said W, et al. Investigation of the glucosinolates of Lepidium sativum growing in Egypt and their biological activity. Res J Med Med Sci. 2007;2:127–32.
33.
Zurück zum Zitat Ulukanli Z, Çenet M, Öztürk B, et al. Chemical characterization, phytotoxic, antimicrobial and insecticidal activities of Vitex agnus-castus’ essential oil from east mediterranean region. J Essent Oil Bear Plants. 2015;18:1500–7.CrossRef Ulukanli Z, Çenet M, Öztürk B, et al. Chemical characterization, phytotoxic, antimicrobial and insecticidal activities of Vitex agnus-castus’ essential oil from east mediterranean region. J Essent Oil Bear Plants. 2015;18:1500–7.CrossRef
34.
Zurück zum Zitat Keridis LAA, Mohamed RAEH, Abutaha N, et al. Larvicidal, and cytoxicity of lepidium sativum L. seed extract against culex pipiens L.(diptera: culicidae). Turkish J Zool. 2021;45:408–15.CrossRef Keridis LAA, Mohamed RAEH, Abutaha N, et al. Larvicidal, and cytoxicity of lepidium sativum L. seed extract against culex pipiens L.(diptera: culicidae). Turkish J Zool. 2021;45:408–15.CrossRef
35.
Zurück zum Zitat Chaubey MK. Insecticidal activity of Trachyspermum ammi (Umbelliferae), Anethum graveolens (Umbelliferae) and Nigella sativa (Ranunculaceae) essential oils against stored-product beetle Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). African J Agric Res. 2007;2:596–600. Chaubey MK. Insecticidal activity of Trachyspermum ammi (Umbelliferae), Anethum graveolens (Umbelliferae) and Nigella sativa (Ranunculaceae) essential oils against stored-product beetle Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). African J Agric Res. 2007;2:596–600.
36.
Zurück zum Zitat Ahmad F, Sagheer M, Hammad A, et al. Insecticidal activity of some plant extracts against trogoderma granarium (E.). Agriculturists. 2013;11:103–11.CrossRef Ahmad F, Sagheer M, Hammad A, et al. Insecticidal activity of some plant extracts against trogoderma granarium (E.). Agriculturists. 2013;11:103–11.CrossRef
37.
Zurück zum Zitat Yokosuka A, Koyama Y, Mimaki Y. Chemical constituents of the underground parts of Iris florentina and their cytotoxic activity. Nat Prod Commun. 2015;10:1934578X1501000641. Yokosuka A, Koyama Y, Mimaki Y. Chemical constituents of the underground parts of Iris florentina and their cytotoxic activity. Nat Prod Commun. 2015;10:1934578X1501000641.
38.
Zurück zum Zitat Khani A, Basavand F. Chemical composition and insecticidal activity of myrtle (myrtus communis L.) essential oil against two stored-product pests. European J Med Plants. 2012;1:83–9. Khani A, Basavand F. Chemical composition and insecticidal activity of myrtle (myrtus communis L.) essential oil against two stored-product pests. European J Med Plants. 2012;1:83–9.
39.
Zurück zum Zitat Hennia A, Nemmiche S, Dandlen S, et al. Myrtus communis essential oils: insecticidal, antioxidant and antimicrobial activities: a review. J Essent Oil Res. 2019;31:487–545.CrossRef Hennia A, Nemmiche S, Dandlen S, et al. Myrtus communis essential oils: insecticidal, antioxidant and antimicrobial activities: a review. J Essent Oil Res. 2019;31:487–545.CrossRef
40.
Zurück zum Zitat Batiha GE‑S, Wasef L, Teibo JO, et al. Commiphora myrrh: a phytochemical and pharmacological update. Naunyn-schmiedeberg’s Arch Pharmacol. 2022; 1–16. Batiha GE‑S, Wasef L, Teibo JO, et al. Commiphora myrrh: a phytochemical and pharmacological update. Naunyn-schmiedeberg’s Arch Pharmacol. 2022; 1–16.
41.
Zurück zum Zitat Meriga B, Mopuri R, MuraliKrishna T. Insecticidal, antimicrobial and antioxidant activities of bulb extracts of Allium sativum. Asian Pac J Trop Med. 2012;5:391–5.PubMedCrossRef Meriga B, Mopuri R, MuraliKrishna T. Insecticidal, antimicrobial and antioxidant activities of bulb extracts of Allium sativum. Asian Pac J Trop Med. 2012;5:391–5.PubMedCrossRef
42.
Zurück zum Zitat Hamada H, Awad M, El-Hefny M, et al. Insecticidal activity of garlic (Allium sativum) and ginger (Zingiber officinale) oils on the cotton leafworm, Spodoptera littoralis (Boisd.)(Lepidoptera: Noctuidae). African Entomol. 2018;26:84–94.CrossRef Hamada H, Awad M, El-Hefny M, et al. Insecticidal activity of garlic (Allium sativum) and ginger (Zingiber officinale) oils on the cotton leafworm, Spodoptera littoralis (Boisd.)(Lepidoptera: Noctuidae). African Entomol. 2018;26:84–94.CrossRef
43.
Zurück zum Zitat Velsankar K, Parvathy G, Mohandoss S, et al. Echinochloa frumentacea grains extract mediated synthesis and characterization of iron oxide nanoparticles: a greener nano drug for potential biomedical applications. J Drug Deliv Sci Technol. 2022;76:103799.CrossRef Velsankar K, Parvathy G, Mohandoss S, et al. Echinochloa frumentacea grains extract mediated synthesis and characterization of iron oxide nanoparticles: a greener nano drug for potential biomedical applications. J Drug Deliv Sci Technol. 2022;76:103799.CrossRef
44.
Zurück zum Zitat Park I‑K, Park J‑D, Kim C‑S, et al. Insecticidal and acaricidal activities of domestic plant extracts against five major arthropod pests. Korean J Pesticide Sci. 2002;6:271–8. Park I‑K, Park J‑D, Kim C‑S, et al. Insecticidal and acaricidal activities of domestic plant extracts against five major arthropod pests. Korean J Pesticide Sci. 2002;6:271–8.
45.
Zurück zum Zitat El Namaky A, El Sadawy H, Al Omari F, et al. Insecticidal activity of Punica granatum L. extract for the control of Rhynchophorus ferrugineus (Olivier)(Coleoptera: Curculionidae) and some of its histological and immunological aspects. J Biopestic. 2020;13:13–20.CrossRef El Namaky A, El Sadawy H, Al Omari F, et al. Insecticidal activity of Punica granatum L. extract for the control of Rhynchophorus ferrugineus (Olivier)(Coleoptera: Curculionidae) and some of its histological and immunological aspects. J Biopestic. 2020;13:13–20.CrossRef
46.
Zurück zum Zitat Hamouda AB, Mechi A, Zarred K, et al. Insecticidal activities of fruit peel extracts of pomegranate (Punica granatum) against the red flour beetle Tribolium castaneum. Tunis J Plant Prot. 2014;9:91–100. Hamouda AB, Mechi A, Zarred K, et al. Insecticidal activities of fruit peel extracts of pomegranate (Punica granatum) against the red flour beetle Tribolium castaneum. Tunis J Plant Prot. 2014;9:91–100.
47.
Zurück zum Zitat Mishra T, Pal M, Kumar A, et al. Termiticidal activity of Punica granatum fruit rind fractions and its compounds against Microcerotermes beesoni. Ind Crops Prod. 2017;107:320–5.CrossRef Mishra T, Pal M, Kumar A, et al. Termiticidal activity of Punica granatum fruit rind fractions and its compounds against Microcerotermes beesoni. Ind Crops Prod. 2017;107:320–5.CrossRef
48.
Zurück zum Zitat Chaghakaboodi Z, Nasiri J, Farahani S. Fumigation toxicity of the essential oils of ferula persica against tribolium castaneum and ephestia kuehniella. Agrotechniques Ind Crop. 2022;2:123–30. Chaghakaboodi Z, Nasiri J, Farahani S. Fumigation toxicity of the essential oils of ferula persica against tribolium castaneum and ephestia kuehniella. Agrotechniques Ind Crop. 2022;2:123–30.
49.
Zurück zum Zitat Salehi M, Naghavi MR, Bahmankar M. A review of ferula species: biochemical characteristics, pharmaceutical and industrial applications, and suggestions for biotechnologists. Ind Crops Prod. 2019;139:111511.CrossRef Salehi M, Naghavi MR, Bahmankar M. A review of ferula species: biochemical characteristics, pharmaceutical and industrial applications, and suggestions for biotechnologists. Ind Crops Prod. 2019;139:111511.CrossRef
50.
Zurück zum Zitat Farag M, Ahmed MH, Yousef H, et al. Repellent and insecticidal activities of Melia azedarach L. against cotton leafworm, Spodoptera littoralis (Boisd.). Z Naturforsch C. 2011;66:129–35.PubMedCrossRef Farag M, Ahmed MH, Yousef H, et al. Repellent and insecticidal activities of Melia azedarach L. against cotton leafworm, Spodoptera littoralis (Boisd.). Z Naturforsch C. 2011;66:129–35.PubMedCrossRef
51.
Zurück zum Zitat Khoshraftar Z, Safekordi A, Shamel A, et al. Evaluation of insecticidal activity of nanoformulation of Melia azedarach (leaf) extract as a safe environmental insecticide. Int J Environ Sci Technol. 2020;17:1159–70.CrossRef Khoshraftar Z, Safekordi A, Shamel A, et al. Evaluation of insecticidal activity of nanoformulation of Melia azedarach (leaf) extract as a safe environmental insecticide. Int J Environ Sci Technol. 2020;17:1159–70.CrossRef
52.
Zurück zum Zitat Michaelakis A, Strongilos AT, Bouzas EA, et al. Larvicidal activity of naturally occurring naphthoquinones and derivatives against the west nile virus vector culex pipiens. Parasitol Res. 2009;104:657–62.PubMedCrossRef Michaelakis A, Strongilos AT, Bouzas EA, et al. Larvicidal activity of naturally occurring naphthoquinones and derivatives against the west nile virus vector culex pipiens. Parasitol Res. 2009;104:657–62.PubMedCrossRef
53.
Zurück zum Zitat Rana S, Chauhan P. Spices that heal: review on untapped potential of lesser-known spices as immunity booster during COVID-19 pandemic. Ann Phytomedicine. 2022;11:7–11. Rana S, Chauhan P. Spices that heal: review on untapped potential of lesser-known spices as immunity booster during COVID-19 pandemic. Ann Phytomedicine. 2022;11:7–11.
54.
Zurück zum Zitat El-Sheikh TM, Bosly HA, Shalaby N. Insecticidal and repellent activities of methanolic extract of tribulus terrestris L.(Zygophyllaceae) against the malarial vector anopheles arabiensis (diptera: culicidae). Egypt Acad J Biol Sci A Entomol. 2012;5:13–22. El-Sheikh TM, Bosly HA, Shalaby N. Insecticidal and repellent activities of methanolic extract of tribulus terrestris L.(Zygophyllaceae) against the malarial vector anopheles arabiensis (diptera: culicidae). Egypt Acad J Biol Sci A Entomol. 2012;5:13–22.
55.
Zurück zum Zitat Bansal S, Singh KV, Sharma S. Larvicidal potential of wild mustard (cleome viscosa) and gokhru (tribulus terrestris) against mosquito vectors in the semi-arid region of western Rajasthan. JEB. 2014;35:327. Bansal S, Singh KV, Sharma S. Larvicidal potential of wild mustard (cleome viscosa) and gokhru (tribulus terrestris) against mosquito vectors in the semi-arid region of western Rajasthan. JEB. 2014;35:327.
56.
Zurück zum Zitat Karimi P, Malekifard F, Tavassoli M. Medicinal plant essential oils as promising anti-varroa agents: oxidative/nitrosative screens. S Afr J Bot. 2022;148:344–51.CrossRef Karimi P, Malekifard F, Tavassoli M. Medicinal plant essential oils as promising anti-varroa agents: oxidative/nitrosative screens. S Afr J Bot. 2022;148:344–51.CrossRef
57.
Zurück zum Zitat Agalya Priyadarshini K, Murugan K, Panneerselvam C, et al. Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using euphorbia hirta against anopheles stephensi Liston (diptera: culicidae). Parasitol Res. 2012;111:997–1006.CrossRef Agalya Priyadarshini K, Murugan K, Panneerselvam C, et al. Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using euphorbia hirta against anopheles stephensi Liston (diptera: culicidae). Parasitol Res. 2012;111:997–1006.CrossRef
58.
Zurück zum Zitat Ahmed S, Zia A, Mehmood S, et al. Change in malate dehydrogenase and alpha amylase activities in rubus fruticosus and valeriana jatamansi treated granary weevil, sitophilus granarius. Braz J Biol. 2020;81:387–91.CrossRef Ahmed S, Zia A, Mehmood S, et al. Change in malate dehydrogenase and alpha amylase activities in rubus fruticosus and valeriana jatamansi treated granary weevil, sitophilus granarius. Braz J Biol. 2020;81:387–91.CrossRef
59.
Zurück zum Zitat Torkey H, Abou-Yousef H, Azeiz AA, et al. Insecticidal effect of cucurbitacin E glycoside isolated from citrullus colocynthis against aphis craccivora. Aust J Basic Appl Sci. 2009;3:4060–6. Torkey H, Abou-Yousef H, Azeiz AA, et al. Insecticidal effect of cucurbitacin E glycoside isolated from citrullus colocynthis against aphis craccivora. Aust J Basic Appl Sci. 2009;3:4060–6.
60.
Zurück zum Zitat Ahmed M, Peiwen Q, Gu Z, et al. Insecticidal activity and biochemical composition of citrullus colocynthis, cannabis indica and artemisia argyi extracts against cabbage aphid (brevicoryne brassicae L.). Sci Rep. 2020;10:1–10. Ahmed M, Peiwen Q, Gu Z, et al. Insecticidal activity and biochemical composition of citrullus colocynthis, cannabis indica and artemisia argyi extracts against cabbage aphid (brevicoryne brassicae L.). Sci Rep. 2020;10:1–10.
61.
Zurück zum Zitat Pavela R. History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects—a review. Plant Prot Sci. 2016;52:229–41.CrossRef Pavela R. History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects—a review. Plant Prot Sci. 2016;52:229–41.CrossRef
62.
Zurück zum Zitat Dhen N, Majdoub O, Souguir S, et al. Chemical composition and fumigant toxicity of artemisia absinthium essential oil against rhyzopertha dominica and spodoptera littoralis. Tunis J Plant Prot. 2014;9:57–65. Dhen N, Majdoub O, Souguir S, et al. Chemical composition and fumigant toxicity of artemisia absinthium essential oil against rhyzopertha dominica and spodoptera littoralis. Tunis J Plant Prot. 2014;9:57–65.
63.
Zurück zum Zitat Fatmanur E, Çetin H, Yorgancilar M, et al. Detection of metabolite content in local bitter white lupin seeds (Lupinus Albus L.) and acaricidal and insecticidal effect of its seed extract. J Agric Sci. 2021;27:407–13. Fatmanur E, Çetin H, Yorgancilar M, et al. Detection of metabolite content in local bitter white lupin seeds (Lupinus Albus L.) and acaricidal and insecticidal effect of its seed extract. J Agric Sci. 2021;27:407–13.
64.
Zurück zum Zitat Luo C, Li D, Wang Y, et al. Chemical composition and insecticide efficacy of essential oils from citrus medica L. var. sarcodactylis swingle against tribolium castaneum herbst in stored medicinal materials. J Essent Oil Bear Plants. 2019;22:1182–94.CrossRef Luo C, Li D, Wang Y, et al. Chemical composition and insecticide efficacy of essential oils from citrus medica L. var. sarcodactylis swingle against tribolium castaneum herbst in stored medicinal materials. J Essent Oil Bear Plants. 2019;22:1182–94.CrossRef
65.
Zurück zum Zitat Pavel M, Ristić M, Stević T. Essential oils of thymus pulegioides and thymus glabrescens from romania: chemical composition and antimicrobial activity. J Serbian Chem Soc. 2010;75:27–34.CrossRef Pavel M, Ristić M, Stević T. Essential oils of thymus pulegioides and thymus glabrescens from romania: chemical composition and antimicrobial activity. J Serbian Chem Soc. 2010;75:27–34.CrossRef
66.
Zurück zum Zitat Bouabida H, Dris D. Phytochemical constituents and larvicidal activity of ruta graveolens, ruta montana and artemisia absinthium hydro-methanolic extract against mosquito vectors of avian plasmodium (culiseta longiareolata). S Afr J Bot. 2022;151:504–11.CrossRef Bouabida H, Dris D. Phytochemical constituents and larvicidal activity of ruta graveolens, ruta montana and artemisia absinthium hydro-methanolic extract against mosquito vectors of avian plasmodium (culiseta longiareolata). S Afr J Bot. 2022;151:504–11.CrossRef
67.
Zurück zum Zitat Delnavazi M‑R, Hadjiakhoondi A, Delazar A, et al. Phytochemical and antioxidant investigation of the aerial parts of dorema glabrum fisch. & CA mey. Iran J Pharm Res. 2015;14:925.PubMedPubMedCentral Delnavazi M‑R, Hadjiakhoondi A, Delazar A, et al. Phytochemical and antioxidant investigation of the aerial parts of dorema glabrum fisch. & CA mey. Iran J Pharm Res. 2015;14:925.PubMedPubMedCentral
68.
Zurück zum Zitat Maghsoodi F, Taheri P. Efficacy of althaea officinalis leaf extract in controlling alternaria spp. pathogenic on citrus. Eur J Plant Pathol. 2021;161:799–813.CrossRef Maghsoodi F, Taheri P. Efficacy of althaea officinalis leaf extract in controlling alternaria spp. pathogenic on citrus. Eur J Plant Pathol. 2021;161:799–813.CrossRef
69.
Zurück zum Zitat Lahcene S, Taibi F, Mestar N, et al. Insecticidal effects of the olea europaea subsp. laperrinei extracts on the flour pyralid ephestia kuehniella. Cell Mol Biol (Noisy-le-grand). 2018;64:6–12.PubMedCrossRef Lahcene S, Taibi F, Mestar N, et al. Insecticidal effects of the olea europaea subsp. laperrinei extracts on the flour pyralid ephestia kuehniella. Cell Mol Biol (Noisy-le-grand). 2018;64:6–12.PubMedCrossRef
70.
Zurück zum Zitat Ibrahim HY, Abdel-Mogib M, Mostafa ME. Insecticidal activity of radish, raphanus sativus linn.(brassicaceae) roots extracts. J Plant Prot Pathol. 2020;11:53–8. Ibrahim HY, Abdel-Mogib M, Mostafa ME. Insecticidal activity of radish, raphanus sativus linn.(brassicaceae) roots extracts. J Plant Prot Pathol. 2020;11:53–8.
71.
Zurück zum Zitat Malmir M, Serrano R, Canica M, et al. A comprehensive review on the medicinal plants from the genus asphodelus. Plants. 2018;7:20.PubMedPubMedCentralCrossRef Malmir M, Serrano R, Canica M, et al. A comprehensive review on the medicinal plants from the genus asphodelus. Plants. 2018;7:20.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Majumder P, Mondal HA, Das S. Insecticidal activity of Arum maculatum tuber lectin and its binding to the glycosylated insect gut receptors. J Agric Food Chem. 2005;53:6725–9.PubMedCrossRef Majumder P, Mondal HA, Das S. Insecticidal activity of Arum maculatum tuber lectin and its binding to the glycosylated insect gut receptors. J Agric Food Chem. 2005;53:6725–9.PubMedCrossRef
73.
Zurück zum Zitat Neves R, Da Camara CA. Chemical composition and acaricidal activity of the essential oils from vitex agnus-castus L.(verbenaceae) and selected monoterpenes. An Acad Bras Cienc. 2016;88:1221–33.PubMedCrossRef Neves R, Da Camara CA. Chemical composition and acaricidal activity of the essential oils from vitex agnus-castus L.(verbenaceae) and selected monoterpenes. An Acad Bras Cienc. 2016;88:1221–33.PubMedCrossRef
74.
Zurück zum Zitat Hashemi SM, Rostaefar A. Insecticidal activity of essential oil from juniperus communis L. subsp. hemisphaerica (Presl) Nyman against two stored product beetles. Ecol Balk. 2014; 6. Hashemi SM, Rostaefar A. Insecticidal activity of essential oil from juniperus communis L. subsp. hemisphaerica (Presl) Nyman against two stored product beetles. Ecol Balk. 2014; 6.
75.
Zurück zum Zitat Brahmi F, Abdenour A, Bruno M, et al. Chemical composition and in vitro antimicrobial, insecticidal and antioxidant activities of the essential oils of mentha pulegium L. and mentha rotundifolia (L.) huds growing in Algeria. Ind Crops Prod. 2016;88:96–105.CrossRef Brahmi F, Abdenour A, Bruno M, et al. Chemical composition and in vitro antimicrobial, insecticidal and antioxidant activities of the essential oils of mentha pulegium L. and mentha rotundifolia (L.) huds growing in Algeria. Ind Crops Prod. 2016;88:96–105.CrossRef
76.
Zurück zum Zitat Fatemikia S, Abbasipour H, Saeedizadeh A. Phytochemical and acaricidal study of the galbanum, ferula gumosa boiss.(apiaceae) essential oil against tetranychus urticae koch (tetranychidae). J Essent Oil Bear Plants. 2017;20:185–95.CrossRef Fatemikia S, Abbasipour H, Saeedizadeh A. Phytochemical and acaricidal study of the galbanum, ferula gumosa boiss.(apiaceae) essential oil against tetranychus urticae koch (tetranychidae). J Essent Oil Bear Plants. 2017;20:185–95.CrossRef
77.
Zurück zum Zitat Wang S, Li SC, Cheng FS, et al. Antifungal, repellency, and insecticidal activities of cymbopogon distans and ruta graveolens essential oils and their main chemical constituents. Chem Biodivers. 2022;19:e202200351.PubMedCrossRef Wang S, Li SC, Cheng FS, et al. Antifungal, repellency, and insecticidal activities of cymbopogon distans and ruta graveolens essential oils and their main chemical constituents. Chem Biodivers. 2022;19:e202200351.PubMedCrossRef
79.
Zurück zum Zitat Abbasipour H, Mahmoudvand M, Rastegar F, et al. Insecticidal activity of peganum harmala seed extract against the diamondback moth, plutella xylostella. Bull Insectology. 2010;63:259–63. Abbasipour H, Mahmoudvand M, Rastegar F, et al. Insecticidal activity of peganum harmala seed extract against the diamondback moth, plutella xylostella. Bull Insectology. 2010;63:259–63.
80.
Zurück zum Zitat Saada I, Mahdi K, Boubekka N, et al. Variability of insecticidal activity of Cupressus sempervirens L., Juniperus phoenicea L., Mentha rotundifolia (L.) Huds, and Asphodelus microcarpus Salzm. & Viv. extracts according to solvents and extraction systems. Biochem Syst Ecol. 2022;105:104502.CrossRef Saada I, Mahdi K, Boubekka N, et al. Variability of insecticidal activity of Cupressus sempervirens L., Juniperus phoenicea L., Mentha rotundifolia (L.) Huds, and Asphodelus microcarpus Salzm. & Viv. extracts according to solvents and extraction systems. Biochem Syst Ecol. 2022;105:104502.CrossRef
81.
Zurück zum Zitat Pavela R, Morshedloo MR, Lupidi G, et al. The volatile oils from the oleo-gum-resins of ferula assa-foetida and ferula gummosa: a comprehensive investigation of their insecticidal activity and eco-toxicological effects. Food Chem Toxicol. 2020;140:111312.PubMedCrossRef Pavela R, Morshedloo MR, Lupidi G, et al. The volatile oils from the oleo-gum-resins of ferula assa-foetida and ferula gummosa: a comprehensive investigation of their insecticidal activity and eco-toxicological effects. Food Chem Toxicol. 2020;140:111312.PubMedCrossRef
82.
Zurück zum Zitat Koorki Z, Shahidi-Noghabi S, Smagghe G, et al. Insecticidal activity of the essential oils from yarrow (Achillea wilhelmsii L.) and sweet asafetida (Ferula assa-foetida L.) against aphis gossypii glover.(Hemiptera: Aphididae) under controlled laboratory conditions. Int J Trop Insect Sci. 2022;42:2827–33.CrossRef Koorki Z, Shahidi-Noghabi S, Smagghe G, et al. Insecticidal activity of the essential oils from yarrow (Achillea wilhelmsii L.) and sweet asafetida (Ferula assa-foetida L.) against aphis gossypii glover.(Hemiptera: Aphididae) under controlled laboratory conditions. Int J Trop Insect Sci. 2022;42:2827–33.CrossRef
83.
Zurück zum Zitat Jemâa JMB, Tersim N, Toudert KT, et al. Insecticidal activities of essential oils from leaves of laurus nobilis L. from Tunisia, Algeria and Morocco, and comparative chemical composition. J Stored Prod Res. 2012;48:97–104.CrossRef Jemâa JMB, Tersim N, Toudert KT, et al. Insecticidal activities of essential oils from leaves of laurus nobilis L. from Tunisia, Algeria and Morocco, and comparative chemical composition. J Stored Prod Res. 2012;48:97–104.CrossRef
84.
Zurück zum Zitat El-Akhal F, Guemmouh R, Ez Zoubi Y, et al. Larvicidal activity of nerium oleander against larvae west nile vector mosquito culex pipiens (diptera: culicidae). J Parasitol Res. 2015;2015. El-Akhal F, Guemmouh R, Ez Zoubi Y, et al. Larvicidal activity of nerium oleander against larvae west nile vector mosquito culex pipiens (diptera: culicidae). J Parasitol Res. 2015;2015.
85.
Zurück zum Zitat Adewumi OA, Singh V, Singh G. Chemical composition, traditional uses and biological activities of artemisia species. J Pharmacogn Phytochem. 2020;9:1124–40. Adewumi OA, Singh V, Singh G. Chemical composition, traditional uses and biological activities of artemisia species. J Pharmacogn Phytochem. 2020;9:1124–40.
Metadaten
Titel
Avicenna’s views on pest control and medicinal plants he prescribed as natural pesticides
verfasst von
Mohammad Amrollahi-Sharifabadi
Jamal Rezaei Orimi
Zahra Adabinia
Tahereh Shakeri
Zahra Aghabeiglooei
Mohammad Hashemimehr
Maedeh Rezghi, PhD
Publikationsdatum
22.02.2024
Verlag
Springer Vienna
Erschienen in
Wiener Medizinische Wochenschrift / Ausgabe 13-14/2024
Print ISSN: 0043-5341
Elektronische ISSN: 1563-258X
DOI
https://doi.org/10.1007/s10354-024-01034-y