Skip to main content
Erschienen in: Spektrum der Augenheilkunde 3/2013

01.06.2013 | original article

How reliable is laser ablation depth readout when planning corneal refractive surgery?

verfasst von: Orang Seyeddain, MD, Prim. Univ.-Prof. Dr. Günther Grabner, MD, Wolfgang Hitzl, PhD, Josef Ruckhofer, MD, Alois Dexl, MD, Msc, Alexander Bachernegg, MD

Erschienen in: Spektrum der Augenheilkunde | Ausgabe 3/2013

Einloggen, um Zugang zu erhalten

Summary

Purpose To analyze the amount of correlation between the intended ablation depth (IAD), as given by the ablation depth readout of the MEL 80 Excimer Laser and the clinically observed ablation depth (OAD), as measured by noncontact optical low-coherence reflecto-metry-pachymetry (OLCR-pachymetry) after Laser in situ keratomileusis (LASIK) and which pre- or perioperative factors would determine the relative amount of the preset laser ablation depth.

Methods

Retrospective, non-comparative, interventional study including 234 spherical or spherocylindrical Caucasian myopic eyes. Only eyes with a pre- and postoperative cylinder < 1.0 diopters and a postoperative re-fractive spherical equivalent (mean refractive spherical equivalent (MRSE)) within ± 0.5 diopters of plano with a minimum of 2 months follow-up were included to reduce unknown bias.

Results

Eleven measurable variables (IAD, corneal thickness (CT), optical zone diameter (OZ), intraoperative flap thickness (FT), intraocular pressure (IOP), sphere, cylinder, mean keratometry (K mean), year of surgery, gender, and age) which might have influenced the difference between IAD and OAD (IAD −OAD = DIR) were evaluated. Four variables with the most significant influence on DIR were chosen by calculating a full general regression model initially and a best-subset regression model thereafter. These four statistical significant variables are: IAD (p = 0.000001), OZ (p = 0.0006), CT (p = 0.0007), and FT (p = 0.0489). A correlation analysis of DIR also showed that right and left eyes are correlated to each other (r = 0.4, p < 0.0001)

Conclusions

The most important factor explaining the variance of DIR seems to be IAD (16 %), OZ (4.4 %), CT (2.1 %), and FT (2.2 %). Overall, 24.7 % of variance may be explained with these four variables of the best-subset analysis in a general regression model.
Die Reliabilität der angezeigten Laserablations Tiefe bei der Planung refraktiv-Hornhautchirurgischer Eingriffe
Literatur
1.
Zurück zum Zitat El-Maghraby A, Salah T, Waring GO 3rd, Klyce S, Ibrahim O. Randomized bilateral comparison of excimer laser in situ keratomileusis and photorefractive keratectomy for 2.50 to 8.00 diopters of myopia. Ophthalmology. 1999;106:447–57. PubMedCrossRef El-Maghraby A, Salah T, Waring GO 3rd, Klyce S, Ibrahim O. Randomized bilateral comparison of excimer laser in situ keratomileusis and photorefractive keratectomy for 2.50 to 8.00 diopters of myopia. Ophthalmology. 1999;106:447–57. PubMedCrossRef
2.
Zurück zum Zitat Hersh PS, Brint SF, Maloney RK, Durrie DS, Gordon M, Michelson MA, Thompson VM, Berkeley RB, Schein OD, Steinert RF. Photorefractive keratectomy versus laser in situ keratomileusis for moderate to high myopia. A randomized prospective study. Ophthalmology. 1998;105:1512–22. Hersh PS, Brint SF, Maloney RK, Durrie DS, Gordon M, Michelson MA, Thompson VM, Berkeley RB, Schein OD, Steinert RF. Photorefractive keratectomy versus laser in situ keratomileusis for moderate to high myopia. A randomized prospective study. Ophthalmology. 1998;105:1512–22.
3.
Zurück zum Zitat Knorz MC, Wiesinger B, Liermann A, Seiberth V, Liesenhoff H. Laser in situ keratomileusis for moderate and high myopia and myopic astigmatism. Ophthalmology. 1998;105:932–40. PubMedCrossRef Knorz MC, Wiesinger B, Liermann A, Seiberth V, Liesenhoff H. Laser in situ keratomileusis for moderate and high myopia and myopic astigmatism. Ophthalmology. 1998;105:932–40. PubMedCrossRef
4.
Zurück zum Zitat Spadea L, Sabetti L, D’Alessandri L, Balestrazzi E. Photorefractive keratectomy and LASIK for the correction of hyperopia: 2-year follow-up. J Refract Surg. 2006;22:131–6. PubMed Spadea L, Sabetti L, D’Alessandri L, Balestrazzi E. Photorefractive keratectomy and LASIK for the correction of hyperopia: 2-year follow-up. J Refract Surg. 2006;22:131–6. PubMed
5.
Zurück zum Zitat Fernandez AP, Jaramillo J, Jaramillo M. Comparison of photorefractive keratectomy and laser in situ keratomileusis for myopia of −6 D or less using the Nidek EC-5000 laser. J Refract Surg. 2000;16:711–5. PubMed Fernandez AP, Jaramillo J, Jaramillo M. Comparison of photorefractive keratectomy and laser in situ keratomileusis for myopia of −6 D or less using the Nidek EC-5000 laser. J Refract Surg. 2000;16:711–5. PubMed
6.
Zurück zum Zitat Neeracher B, Senn P, Schipper I. Glare sensitivity and optical side effects 1 year after photorefractive keratectomy and laser in situ Keratomileusis. J Cataract Refract Surg. 2004;30:1696–701. PubMedCrossRef Neeracher B, Senn P, Schipper I. Glare sensitivity and optical side effects 1 year after photorefractive keratectomy and laser in situ Keratomileusis. J Cataract Refract Surg. 2004;30:1696–701. PubMedCrossRef
7.
Zurück zum Zitat Thomas J, Wang J, Rollins AM, Sturm J. Comparison of corneal thickness measured with optical coherence tomography, ultrasonic pachymetry, and a scanning slit method. J Refract Surg. 2006 Sep;22:671–8. PubMed Thomas J, Wang J, Rollins AM, Sturm J. Comparison of corneal thickness measured with optical coherence tomography, ultrasonic pachymetry, and a scanning slit method. J Refract Surg. 2006 Sep;22:671–8. PubMed
8.
Zurück zum Zitat Durairaj VD, Balentine J, Kouyoumdjian G, Tooze JA, Young D, Spivack L, Taravella MJ. The predictability of corneal flap thickness and tissue laser ablation in laser in situ keratomileusis. Ophthalmology. 2000;107:2140–3. PubMedCrossRef Durairaj VD, Balentine J, Kouyoumdjian G, Tooze JA, Young D, Spivack L, Taravella MJ. The predictability of corneal flap thickness and tissue laser ablation in laser in situ keratomileusis. Ophthalmology. 2000;107:2140–3. PubMedCrossRef
9.
Zurück zum Zitat Ucakhan OO. Corneal flap thickness in laser in situ keratomileusis using the summit Krumeich-Barraquer microkeratome. J Cataract Refract Surg. 2002;28:798–804. PubMedCrossRef Ucakhan OO. Corneal flap thickness in laser in situ keratomileusis using the summit Krumeich-Barraquer microkeratome. J Cataract Refract Surg. 2002;28:798–804. PubMedCrossRef
10.
Zurück zum Zitat Thompson RW Jr, Choi DM, Price MO, Potrezbowski L, Price FW Jr. Noncontact optical coherence tomography for measurement of corneal flap and residual stromal bed thickness after laser in situ keratomileusis. J Refract Surg. 2003;19:507–15. PubMed Thompson RW Jr, Choi DM, Price MO, Potrezbowski L, Price FW Jr. Noncontact optical coherence tomography for measurement of corneal flap and residual stromal bed thickness after laser in situ keratomileusis. J Refract Surg. 2003;19:507–15. PubMed
11.
Zurück zum Zitat Seiler T, Koufala K, Richter G. Iatrogenic keratectasia after laser in situ keratomileusis. J Refract Surg. 1998;14:312–7. PubMed Seiler T, Koufala K, Richter G. Iatrogenic keratectasia after laser in situ keratomileusis. J Refract Surg. 1998;14:312–7. PubMed
12.
Zurück zum Zitat McLeod SD, Kisla TA, Caro NC, McMahon TT. Iatrogenic keratoconus: corneal ectasia following laser in situ keratomileusis for myopia. Arch Ophthalmol. 2000;118:282–4. PubMed McLeod SD, Kisla TA, Caro NC, McMahon TT. Iatrogenic keratoconus: corneal ectasia following laser in situ keratomileusis for myopia. Arch Ophthalmol. 2000;118:282–4. PubMed
13.
Zurück zum Zitat Genth U, Mrochen M, Walti R, Salaheldine MM, Seiler T. Optical low coherence reflectometry for noncontact measurements of flap thickness during laser in situ keratomileusis. Ophthalmology. 2002;109:973–8. PubMedCrossRef Genth U, Mrochen M, Walti R, Salaheldine MM, Seiler T. Optical low coherence reflectometry for noncontact measurements of flap thickness during laser in situ keratomileusis. Ophthalmology. 2002;109:973–8. PubMedCrossRef
14.
Zurück zum Zitat Geggel HS, Coday MP. Late-onset traumatic laser in situ keratomileusis (LASIK) flap dehiscence. Am J Ophthalmol. 2001;131:505–6. PubMedCrossRef Geggel HS, Coday MP. Late-onset traumatic laser in situ keratomileusis (LASIK) flap dehiscence. Am J Ophthalmol. 2001;131:505–6. PubMedCrossRef
15.
Zurück zum Zitat Muallem MS, Yoo SH, Romano AC, Marangon FB, Schiffman JC, Culbertson WW. Flap and stromal bed thickness in laser in situ keratomileusis enhancement. J Cataract Refract Surg. 2004;30:2295–302. PubMedCrossRef Muallem MS, Yoo SH, Romano AC, Marangon FB, Schiffman JC, Culbertson WW. Flap and stromal bed thickness in laser in situ keratomileusis enhancement. J Cataract Refract Surg. 2004;30:2295–302. PubMedCrossRef
16.
Zurück zum Zitat Iskander NG, Peters NT, Anderson Penno E, Gimbel HV. Postoperative complications in laser in situ keratomileusis. Curr Opin Ophthalmol. 2000;11:273–9. PubMedCrossRef Iskander NG, Peters NT, Anderson Penno E, Gimbel HV. Postoperative complications in laser in situ keratomileusis. Curr Opin Ophthalmol. 2000;11:273–9. PubMedCrossRef
17.
Zurück zum Zitat Wang Z, Chen J, Yang B. Posterior corneal surface topographic changes after laser in situ keratomileusis are related to residual corneal bed thickness. Ophthalmology. 1999;106:406–9. PubMedCrossRef Wang Z, Chen J, Yang B. Posterior corneal surface topographic changes after laser in situ keratomileusis are related to residual corneal bed thickness. Ophthalmology. 1999;106:406–9. PubMedCrossRef
18.
Zurück zum Zitat Flanagan GW, Binder PS. The theoretical vs. measured laser resection for laser in situ keratomileusis. J Refract Surg. 2005;21:18–27. PubMed Flanagan GW, Binder PS. The theoretical vs. measured laser resection for laser in situ keratomileusis. J Refract Surg. 2005;21:18–27. PubMed
19.
Zurück zum Zitat Muallem MS, Yoo SH, Romano AC, Marangon FB, Schiffman JC, Culbertson WW. Flap and stromal bed thickness in laser in situ keratomileusis enhancement. J Cataract Refract Surg. 2004;30:2295–302. PubMedCrossRef Muallem MS, Yoo SH, Romano AC, Marangon FB, Schiffman JC, Culbertson WW. Flap and stromal bed thickness in laser in situ keratomileusis enhancement. J Cataract Refract Surg. 2004;30:2295–302. PubMedCrossRef
20.
Zurück zum Zitat Checklist of information usually submitted in an Investigational Device Exemptions (IDE) application for refractive surgery lasers. Diagnostic and Surgical Devices Branch, Division of Ophthalmic Devices, Office of Device Evaluation. U.S. Department of Health and Human Services Food and Drug Administration (FDA) Center for Devices and Radiological Health October 10, 1996. Checklist of information usually submitted in an Investigational Device Exemptions (IDE) application for refractive surgery lasers. Diagnostic and Surgical Devices Branch, Division of Ophthalmic Devices, Office of Device Evaluation. U.S. Department of Health and Human Services Food and Drug Administration (FDA) Center for Devices and Radiological Health October 10, 1996.
21.
Zurück zum Zitat Rainer G, Findl O, Petternel V, Kiss B, Drexler W, Skorpik C, Georgopoulos M, Schmetterer L. Central corneal thickness measurements with partial coherence interferometry, ultrasound, and the Orbscan system. Ophthalmology. 2004;111:875–9. PubMedCrossRef Rainer G, Findl O, Petternel V, Kiss B, Drexler W, Skorpik C, Georgopoulos M, Schmetterer L. Central corneal thickness measurements with partial coherence interferometry, ultrasound, and the Orbscan system. Ophthalmology. 2004;111:875–9. PubMedCrossRef
22.
Zurück zum Zitat Wirbelauer C, Scholz C, Hoerauf H, Pham DT, Laqua H, Birngruber R. Noncontact corneal pachymetry with slit lamp-adapted optical coherence tomography. Am J Ophthalmol. 2002;133:444–50. PubMedCrossRef Wirbelauer C, Scholz C, Hoerauf H, Pham DT, Laqua H, Birngruber R. Noncontact corneal pachymetry with slit lamp-adapted optical coherence tomography. Am J Ophthalmol. 2002;133:444–50. PubMedCrossRef
23.
Zurück zum Zitat Böhnke M, Chavanne P, Gianotti R, Salathe RP. Continuous noncontact corneal pachymetry with a high speed reflectometer. J Refract Surg. 1998;14:140–6. PubMed Böhnke M, Chavanne P, Gianotti R, Salathe RP. Continuous noncontact corneal pachymetry with a high speed reflectometer. J Refract Surg. 1998;14:140–6. PubMed
24.
Zurück zum Zitat Böhnke M, Masters BR, Ballif J, Chavanne P, Salathé RP. Precision and reproducibility of measurements of human corneal thickness with rapid optical low-coherence reflectometry (OLCR). J Biomed Opt. 1999;4:152–6. CrossRef Böhnke M, Masters BR, Ballif J, Chavanne P, Salathé RP. Precision and reproducibility of measurements of human corneal thickness with rapid optical low-coherence reflectometry (OLCR). J Biomed Opt. 1999;4:152–6. CrossRef
25.
Zurück zum Zitat Maldonado MJ, Ruiz-Oblitas L, Munuera JM, Aliseda D, Garcia-Layana A, Moreno-Montanes J. Optical coherence tomography evaluation of the corneal cap and stromal bed features after laser in situ keratomileusis for high myopia and astigmatism. Ophthalmology. 2000;107:81–7. PubMedCrossRef Maldonado MJ, Ruiz-Oblitas L, Munuera JM, Aliseda D, Garcia-Layana A, Moreno-Montanes J. Optical coherence tomography evaluation of the corneal cap and stromal bed features after laser in situ keratomileusis for high myopia and astigmatism. Ophthalmology. 2000;107:81–7. PubMedCrossRef
26.
Zurück zum Zitat Feltham MH, Wolfe RJ. Some variables to consider to avoid the need for LASIK surgical enhancements. Clin Exp Optom. 2000;83:76–81. PubMedCrossRef Feltham MH, Wolfe RJ. Some variables to consider to avoid the need for LASIK surgical enhancements. Clin Exp Optom. 2000;83:76–81. PubMedCrossRef
27.
Zurück zum Zitat Chang AW, Tsang AC, Contreras JE. Corneal tissue ablation depth and the Munnerlyn formula. J Cataract Refract Surg. 2003;29:1204–10. PubMedCrossRef Chang AW, Tsang AC, Contreras JE. Corneal tissue ablation depth and the Munnerlyn formula. J Cataract Refract Surg. 2003;29:1204–10. PubMedCrossRef
28.
Zurück zum Zitat Reinstein DZ, Couch DG, Archer T. Direct residual stromal thickness measurement for assessing suitability for LASIK enhancement by Artemis 3D very high-frequency digital ultrasound arc scanning. J Cataract Refract Surg. 2006;32:1884–8. PubMedCrossRef Reinstein DZ, Couch DG, Archer T. Direct residual stromal thickness measurement for assessing suitability for LASIK enhancement by Artemis 3D very high-frequency digital ultrasound arc scanning. J Cataract Refract Surg. 2006;32:1884–8. PubMedCrossRef
29.
Zurück zum Zitat Yildirim R, Aras C, Ozdamar A, Bahcecioglu H, Ozkan S. Reproducibility of corneal flap thickness in laser in situ keratomileusis using the Hansatome microkeratome. J Cataract Refract Surg. 2000;26:1729–32. PubMedCrossRef Yildirim R, Aras C, Ozdamar A, Bahcecioglu H, Ozkan S. Reproducibility of corneal flap thickness in laser in situ keratomileusis using the Hansatome microkeratome. J Cataract Refract Surg. 2000;26:1729–32. PubMedCrossRef
30.
Zurück zum Zitat Ucakhan OO. Corneal flap thickness in laser in situ keratomileusis using the Summit Krumeich-Barraquer microkeratome. J Cataract Refract Surg. 2002;28:798–804. PubMedCrossRef Ucakhan OO. Corneal flap thickness in laser in situ keratomileusis using the Summit Krumeich-Barraquer microkeratome. J Cataract Refract Surg. 2002;28:798–804. PubMedCrossRef
31.
Zurück zum Zitat Yi WM, Joo CK. Corneal flap thickness in laser in situ keratomileusis using an SCMD manual microkeratome. J Cataract Refract Surg. 1999;25:1087–92. PubMedCrossRef Yi WM, Joo CK. Corneal flap thickness in laser in situ keratomileusis using an SCMD manual microkeratome. J Cataract Refract Surg. 1999;25:1087–92. PubMedCrossRef
32.
Zurück zum Zitat Feltham MH, Stapletom F. Change in central corneal thickness following laser in situ keratomileusis for myopia. Clin Experiment Ophthalmol. 2000;28:185–7. PubMedCrossRef Feltham MH, Stapletom F. Change in central corneal thickness following laser in situ keratomileusis for myopia. Clin Experiment Ophthalmol. 2000;28:185–7. PubMedCrossRef
33.
Zurück zum Zitat Solomon KD, Donnenfeld E, Sandoval HP, Al Sarraf O, Kasper TJ, Holzer MP, Slate EH, Vroman DT. Flap Thickness Study Group. Flap thickness accuracy: comparison of 6 microkeratome models. J Cataract Refract Surg. 2004;30:964–77. PubMedCrossRef Solomon KD, Donnenfeld E, Sandoval HP, Al Sarraf O, Kasper TJ, Holzer MP, Slate EH, Vroman DT. Flap Thickness Study Group. Flap thickness accuracy: comparison of 6 microkeratome models. J Cataract Refract Surg. 2004;30:964–77. PubMedCrossRef
34.
Zurück zum Zitat Flanagan GW, Binder PS. Role of flap thickness in Laser in situ keratomileusis enhancement for refractive under correction. J Cataract Refract Surg. 2006;32:1129–41. PubMedCrossRef Flanagan GW, Binder PS. Role of flap thickness in Laser in situ keratomileusis enhancement for refractive under correction. J Cataract Refract Surg. 2006;32:1129–41. PubMedCrossRef
35.
Zurück zum Zitat Das S, Sullivan LJ. Comparison of residual stromal bed and flap thickness in primary and repeat laser in situ keratomileusis in myopic patients. J Cataract Refract Surg. 2006;32:2080–4. PubMedCrossRef Das S, Sullivan LJ. Comparison of residual stromal bed and flap thickness in primary and repeat laser in situ keratomileusis in myopic patients. J Cataract Refract Surg. 2006;32:2080–4. PubMedCrossRef
36.
Zurück zum Zitat Perez-Santonja JJ, Bellot J, Claramonte P, Ismail MM, Alio JL. Laser in situ keratomileusis to correct high myopia. J Cataract Refract Surg. 1997;23:372–85. PubMedCrossRef Perez-Santonja JJ, Bellot J, Claramonte P, Ismail MM, Alio JL. Laser in situ keratomileusis to correct high myopia. J Cataract Refract Surg. 1997;23:372–85. PubMedCrossRef
37.
Zurück zum Zitat Dupps WJ Jr, Wilson SE. Biomechanics and wound healing in the cornea. Exp Eye Res. 2006;83:709–20. PubMedCrossRef Dupps WJ Jr, Wilson SE. Biomechanics and wound healing in the cornea. Exp Eye Res. 2006;83:709–20. PubMedCrossRef
38.
Zurück zum Zitat Lyle WA, Jin GJC. Retreatment after initial laser in situ keratomileusis. J Cataract Refract Surg. 2000;26:650–9. PubMedCrossRef Lyle WA, Jin GJC. Retreatment after initial laser in situ keratomileusis. J Cataract Refract Surg. 2000;26:650–9. PubMedCrossRef
39.
Zurück zum Zitat Rao SK, Cheng AC, Fan DS, Leung AT, Lam DS. Effect of preoperative keratometry on refractive outcomes after laser in situ keratomileusis. J Cataract Refract Surg. 2001;27:297–302. PubMedCrossRef Rao SK, Cheng AC, Fan DS, Leung AT, Lam DS. Effect of preoperative keratometry on refractive outcomes after laser in situ keratomileusis. J Cataract Refract Surg. 2001;27:297–302. PubMedCrossRef
40.
Zurück zum Zitat Price FW Jr, Koller DL, Price MO. Central corneal pachymetry in patients undergoing laser in situ keratomileusis. Ophthalmology. 1999;106:2216–20. PubMedCrossRef Price FW Jr, Koller DL, Price MO. Central corneal pachymetry in patients undergoing laser in situ keratomileusis. Ophthalmology. 1999;106:2216–20. PubMedCrossRef
41.
Zurück zum Zitat Ivarsen A, Moller-Pedersen T. LASIK induces minimal regrowth and no haze development in rabbit corneas. Curr Eye Res. 2005;30:363–73. PubMedCrossRef Ivarsen A, Moller-Pedersen T. LASIK induces minimal regrowth and no haze development in rabbit corneas. Curr Eye Res. 2005;30:363–73. PubMedCrossRef
42.
Zurück zum Zitat Ivarsen A, Laurberg T, Moller-Pedersen T. Role of keratocyte loss on corneal wound repair after LASIK. Invest Ophthalmol Vis Sci. 2004;45:3499–506. PubMedCrossRef Ivarsen A, Laurberg T, Moller-Pedersen T. Role of keratocyte loss on corneal wound repair after LASIK. Invest Ophthalmol Vis Sci. 2004;45:3499–506. PubMedCrossRef
43.
Zurück zum Zitat Erie JC, Patel SV, McLaren JW, Ramirez M, Hodge DO, Maguire LJ, Bourne WM. Effect of myopic laser in situ keratomileusis on epithelial and stromal thickness: a confocal microscopy study. Ophthalmology. 2002;109:1447–52. PubMedCrossRef Erie JC, Patel SV, McLaren JW, Ramirez M, Hodge DO, Maguire LJ, Bourne WM. Effect of myopic laser in situ keratomileusis on epithelial and stromal thickness: a confocal microscopy study. Ophthalmology. 2002;109:1447–52. PubMedCrossRef
44.
Zurück zum Zitat Spadea L, Fasciani R, Necozione S, Balestrazzi E. Role of the corneal epithelium in refractive changes following laser in situ keratomileusis for high myopia. J Refract Surg. 2000;16:133–9. PubMed Spadea L, Fasciani R, Necozione S, Balestrazzi E. Role of the corneal epithelium in refractive changes following laser in situ keratomileusis for high myopia. J Refract Surg. 2000;16:133–9. PubMed
45.
Zurück zum Zitat Lohmann CP, Guell JL. Regression after LASIK for the treatment of myopia: the role of the corneal epithelium. Semin Ophthalmol. 1998;13:79–82. PubMedCrossRef Lohmann CP, Guell JL. Regression after LASIK for the treatment of myopia: the role of the corneal epithelium. Semin Ophthalmol. 1998;13:79–82. PubMedCrossRef
46.
Zurück zum Zitat Park CK, Kim JH. Comparison of wound healing after photorefractive keratectomy and laser in situ keratomileusis in rabbits. J. Cataract Refract Surg. 1999;25:842–50. PubMedCrossRef Park CK, Kim JH. Comparison of wound healing after photorefractive keratectomy and laser in situ keratomileusis in rabbits. J. Cataract Refract Surg. 1999;25:842–50. PubMedCrossRef
47.
Zurück zum Zitat Walter KA, Stevenson AW. Effect of environmental factors on myopic LASIK enhancement rates. J Cataract Refract Surg. 2004;30:798–803. PubMedCrossRef Walter KA, Stevenson AW. Effect of environmental factors on myopic LASIK enhancement rates. J Cataract Refract Surg. 2004;30:798–803. PubMedCrossRef
48.
Zurück zum Zitat Munnerlyn CR, Koons SJ, Marshall J. Photorefractive keratectomy: a technique for laser refractive surgery. J Cataract Refract Surg. 1988;14:46–52. PubMedCrossRef Munnerlyn CR, Koons SJ, Marshall J. Photorefractive keratectomy: a technique for laser refractive surgery. J Cataract Refract Surg. 1988;14:46–52. PubMedCrossRef
49.
Zurück zum Zitat Kim ws, Jo JM. Corneal hydration affects ablation during laser in situ keratomileusis surgery. Cornea. 2001;20:394–7. PubMedCrossRef Kim ws, Jo JM. Corneal hydration affects ablation during laser in situ keratomileusis surgery. Cornea. 2001;20:394–7. PubMedCrossRef
Metadaten
Titel
How reliable is laser ablation depth readout when planning corneal refractive surgery?
verfasst von
Orang Seyeddain, MD
Prim. Univ.-Prof. Dr. Günther Grabner, MD
Wolfgang Hitzl, PhD
Josef Ruckhofer, MD
Alois Dexl, MD, Msc
Alexander Bachernegg, MD
Publikationsdatum
01.06.2013
Verlag
Springer Vienna
Erschienen in
Spektrum der Augenheilkunde / Ausgabe 3/2013
Print ISSN: 0930-4282
Elektronische ISSN: 1613-7523
DOI
https://doi.org/10.1007/s00717-013-0167-4

Weitere Artikel der Ausgabe 3/2013

Spektrum der Augenheilkunde 3/2013 Zur Ausgabe