Skip to main content
Erschienen in: Wiener klinisches Magazin 5/2015

01.10.2015 | Intensivmedizin

Epigenetische Regulation in der Sepsis

Aktueller Wissensstand

verfasst von: Dr. Sebastian Weiterer, Florian Uhle, Benedikt H. Siegler, Christoph Lichtenstern, Marek Bartkuhn, Markus A. Weigand Weigand

Erschienen in: Wiener klinisches Magazin | Ausgabe 5/2015

Einloggen, um Zugang zu erhalten

Zusammenfassung

Die Sepsis ist das Krankheitsbild, das aus einer schweren systemischen Immunreaktion des Körpers auf eine Infektion unterschiedlicher Ursache resultiert. Initial reagiert das Immunsystem mit einer überschießenden Aktivierung von Entzündungszellen und der Ausschüttung proinflammatorischer Zytokine. Gleichzeitig wirken körpereigene Mechanismen durch antiinflammatorische Mediatoren und Immunzellen dieser generalisierten Entzündungsreaktion als Gegenregulation entgegen. Auch diese kompensatorische antiinflammatorische Immunantwort kann entsprechend der proinflammatorischen Reaktion übersteigert sein und resultiert dann in einer prolongierten sepsisinduzierten Immunsuppression. Die Gründe für eine solche persistierende antiinflammatorische Reaktion und die daraus folgende Vulnerabilität sind unklar. Allerdings gibt es Hinweise, dass ein septisches Ereignis die Grundeigenschaften der Immunzellen durch epigenetische Modifikation verändert. Veränderungen von Histonmodifikationen und Änderungen der Aktivierungsmechanismen von Transkriptionsfaktoren scheinen dabei in vielen Zellen des Immunsystems, wie Makrophagen, wichtige Rollen zu spielen sowie dadurch die Genregulation und Transkriptionsmechanismen der Zelle zu beeinflussen. Dieser Beitrag gibt einen Überblick über den aktuellen Stand der epigenetischen Sepsisforschung und über bisherige Erkenntnisse zu den langfristigen Auswirkungen der Sepsis auf das Immunsystem.
Literatur
1.
Zurück zum Zitat Hotchkiss RS, Monneret G, Payen D (2013) Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis 13(3):260–268PubMedCentralCrossRefPubMed Hotchkiss RS, Monneret G, Payen D (2013) Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis 13(3):260–268PubMedCentralCrossRefPubMed
2.
Zurück zum Zitat Torgersen C et al (2009) Macroscopic postmortem findings in 235 surgical intensive care patients with sepsis. Anesth Analg 108(6):1841–1847CrossRefPubMed Torgersen C et al (2009) Macroscopic postmortem findings in 235 surgical intensive care patients with sepsis. Anesth Analg 108(6):1841–1847CrossRefPubMed
3.
Zurück zum Zitat Rivers E et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345(19):1368–1377CrossRefPubMed Rivers E et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345(19):1368–1377CrossRefPubMed
4.
Zurück zum Zitat Sandiumenge A et al (2003) Therapy of ventilator-associated pneumonia. A patient-based approach based on the ten rules of „The Tarragona Strategy“. Intensive Care Med 29(6):876–883PubMed Sandiumenge A et al (2003) Therapy of ventilator-associated pneumonia. A patient-based approach based on the ten rules of „The Tarragona Strategy“. Intensive Care Med 29(6):876–883PubMed
5.
6.
Zurück zum Zitat Hotchkiss RS et al (1999) Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med 27(7):1230–1251CrossRefPubMed Hotchkiss RS et al (1999) Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med 27(7):1230–1251CrossRefPubMed
7.
Zurück zum Zitat Kethireddy S, Kumar A (2012) Mortality due to septic shock following early, appropriate antibiotic therapy: can we do better? Crit Care Med 40(7):2228–2229CrossRefPubMed Kethireddy S, Kumar A (2012) Mortality due to septic shock following early, appropriate antibiotic therapy: can we do better? Crit Care Med 40(7):2228–2229CrossRefPubMed
8.
Zurück zum Zitat Wiersinga WJ (2011) Current insights in sepsis: from pathogenesis to new treatment targets. Curr Opin Crit Care 17(5):480–486CrossRefPubMed Wiersinga WJ (2011) Current insights in sepsis: from pathogenesis to new treatment targets. Curr Opin Crit Care 17(5):480–486CrossRefPubMed
9.
Zurück zum Zitat Weber GF, Swirski FK (2013) Immunopathogenesis of abdominal sepsis. Langenbecks Arch Surg 399(1):1–9CrossRef Weber GF, Swirski FK (2013) Immunopathogenesis of abdominal sepsis. Langenbecks Arch Surg 399(1):1–9CrossRef
11.
Zurück zum Zitat Vogl T et al (2007) Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 13(9):1042–1049CrossRefPubMed Vogl T et al (2007) Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 13(9):1042–1049CrossRefPubMed
12.
14.
16.
Zurück zum Zitat Yousefi S et al (2008) Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med 14(9):949–953CrossRefPubMed Yousefi S et al (2008) Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med 14(9):949–953CrossRefPubMed
17.
18.
Zurück zum Zitat Borovikova LV et al (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405(6785):458–462CrossRefPubMed Borovikova LV et al (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405(6785):458–462CrossRefPubMed
19.
Zurück zum Zitat Monneret G et al (2003) Marked elevation of human circulating CD4+CD25+ regulatory T cells in sepsis-induced immunoparalysis. Crit Care Med 31(7):2068–2071CrossRefPubMed Monneret G et al (2003) Marked elevation of human circulating CD4+CD25+ regulatory T cells in sepsis-induced immunoparalysis. Crit Care Med 31(7):2068–2071CrossRefPubMed
21.
Zurück zum Zitat Kumpf O, Schumann RR (2010) Genetic variation in innate immunity pathways and their potential contribution to the SIRS/CARS debate: evidence from human studies and animal models. J Innate Immun 2(5):381–394CrossRefPubMed Kumpf O, Schumann RR (2010) Genetic variation in innate immunity pathways and their potential contribution to the SIRS/CARS debate: evidence from human studies and animal models. J Innate Immun 2(5):381–394CrossRefPubMed
23.
Zurück zum Zitat Hoetzenecker W et al (2012) ROS-induced ATF3 causes susceptibility to secondary infections during sepsis-associated immunosuppression. Nat Med 18(1):128–134CrossRef Hoetzenecker W et al (2012) ROS-induced ATF3 causes susceptibility to secondary infections during sepsis-associated immunosuppression. Nat Med 18(1):128–134CrossRef
24.
Zurück zum Zitat Freeman GJ et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192(7):1027–1034PubMedCentralCrossRefPubMed Freeman GJ et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192(7):1027–1034PubMedCentralCrossRefPubMed
25.
Zurück zum Zitat Inoue S et al (2013) Reduction of immunocompetent T cells followed by prolonged lymphopenia in severe sepsis in the elderly. Crit Care Med 41(3):810–819CrossRefPubMed Inoue S et al (2013) Reduction of immunocompetent T cells followed by prolonged lymphopenia in severe sepsis in the elderly. Crit Care Med 41(3):810–819CrossRefPubMed
26.
27.
Zurück zum Zitat Pachot A et al (2008) Decreased expression of the fractalkine receptor CX3CR1 on circulating monocytes as new feature of sepsis-induced immunosuppression. J Immunol 180(9):6421–6429CrossRefPubMed Pachot A et al (2008) Decreased expression of the fractalkine receptor CX3CR1 on circulating monocytes as new feature of sepsis-induced immunosuppression. J Immunol 180(9):6421–6429CrossRefPubMed
28.
29.
Zurück zum Zitat Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45CrossRefPubMed Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45CrossRefPubMed
30.
31.
Zurück zum Zitat Li Z et al (2014) DNA methylation downregulated mir-10b acts as a tumor suppressor in gastric cancer. Gastric Cancer. DOI 10.1007/s10120-014-0340-8 Li Z et al (2014) DNA methylation downregulated mir-10b acts as a tumor suppressor in gastric cancer. Gastric Cancer. DOI 10.1007/s10120-014-0340-8
32.
Zurück zum Zitat Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128(4):707–719CrossRefPubMed Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128(4):707–719CrossRefPubMed
33.
34.
Zurück zum Zitat Probst AV, Dunleavy E, Almouzni G (2009) Epigenetic inheritance during the cell cycle. Nat Rev Mol Cell Biol 10(3):192–206CrossRefPubMed Probst AV, Dunleavy E, Almouzni G (2009) Epigenetic inheritance during the cell cycle. Nat Rev Mol Cell Biol 10(3):192–206CrossRefPubMed
35.
Zurück zum Zitat Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114CrossRefPubMed Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114CrossRefPubMed
36.
Zurück zum Zitat Grabiec AM et al (2010) Histone deacetylase inhibitors suppress inflammatory activation of rheumatoid arthritis patient synovial macrophages and tissue. J Immunol 184(5):2718–2728CrossRefPubMed Grabiec AM et al (2010) Histone deacetylase inhibitors suppress inflammatory activation of rheumatoid arthritis patient synovial macrophages and tissue. J Immunol 184(5):2718–2728CrossRefPubMed
37.
Zurück zum Zitat Maciejewska-Rodrigues H et al (2010) Epigenetics and rheumatoid arthritis: the role of SENP1 in the regulation of MMP-1 expression. J Autoimmun 35(1):15–22CrossRefPubMed Maciejewska-Rodrigues H et al (2010) Epigenetics and rheumatoid arthritis: the role of SENP1 in the regulation of MMP-1 expression. J Autoimmun 35(1):15–22CrossRefPubMed
38.
Zurück zum Zitat Cavaillon JM, Adib-Conquy M (2006) Bench-to-bedside review: endotoxin tolerance as a model of leukocyte reprogramming in sepsis. Crit Care 10(5):233PubMedCentralCrossRefPubMed Cavaillon JM, Adib-Conquy M (2006) Bench-to-bedside review: endotoxin tolerance as a model of leukocyte reprogramming in sepsis. Crit Care 10(5):233PubMedCentralCrossRefPubMed
39.
Zurück zum Zitat El Gazzar M et al (2008) G9a and HP1 couple histone and DNA methylation to TNFalpha transcription silencing during endotoxin tolerance. J Biol Chem 283(47):32198–32208CrossRef El Gazzar M et al (2008) G9a and HP1 couple histone and DNA methylation to TNFalpha transcription silencing during endotoxin tolerance. J Biol Chem 283(47):32198–32208CrossRef
40.
Zurück zum Zitat Liu TF et al (2011) NAD+-dependent SIRT1 deacetylase participates in epigenetic reprogramming during endotoxin tolerance. J Biol Chem 286(11):9856–9864PubMedCentralCrossRefPubMed Liu TF et al (2011) NAD+-dependent SIRT1 deacetylase participates in epigenetic reprogramming during endotoxin tolerance. J Biol Chem 286(11):9856–9864PubMedCentralCrossRefPubMed
41.
Zurück zum Zitat Asavarut P et al (2013) The role of HMGB1 in inflammation-mediated organ injury. Acta Anaesthesiol Taiwan 51(1):28–33CrossRefPubMed Asavarut P et al (2013) The role of HMGB1 in inflammation-mediated organ injury. Acta Anaesthesiol Taiwan 51(1):28–33CrossRefPubMed
43.
Zurück zum Zitat El Gazzar M et al (2009) Chromatin-specific remodeling by HMGB1 and linker histone H1 silences proinflammatory genes during endotoxin tolerance. Mol Cell Biol 29(7):1959–1971CrossRef El Gazzar M et al (2009) Chromatin-specific remodeling by HMGB1 and linker histone H1 silences proinflammatory genes during endotoxin tolerance. Mol Cell Biol 29(7):1959–1971CrossRef
44.
Zurück zum Zitat Chan C et al (2005) Endotoxin tolerance disrupts chromatin remodeling and NF-kappaB transactivation at the IL-1beta promoter. J Immunol 175(1):461–468CrossRefPubMed Chan C et al (2005) Endotoxin tolerance disrupts chromatin remodeling and NF-kappaB transactivation at the IL-1beta promoter. J Immunol 175(1):461–468CrossRefPubMed
46.
Zurück zum Zitat Chen X et al (2012) Requirement for the histone deacetylase Hdac3 for the inflammatory gene expression program in macrophages. Proc Natl Acad Sci U S A 109(42):E2865–E2874PubMedCentralCrossRefPubMed Chen X et al (2012) Requirement for the histone deacetylase Hdac3 for the inflammatory gene expression program in macrophages. Proc Natl Acad Sci U S A 109(42):E2865–E2874PubMedCentralCrossRefPubMed
47.
Zurück zum Zitat Tsaprouni LG et al (2007) Suppression of lipopolysaccharide- and tumour necrosis factor-alpha-induced interleukin (IL)-8 expression by glucocorticoids involves changes in IL-8 promoter acetylation. Clin Exp Immunol 150(1):151–157PubMedCentralCrossRefPubMed Tsaprouni LG et al (2007) Suppression of lipopolysaccharide- and tumour necrosis factor-alpha-induced interleukin (IL)-8 expression by glucocorticoids involves changes in IL-8 promoter acetylation. Clin Exp Immunol 150(1):151–157PubMedCentralCrossRefPubMed
48.
Zurück zum Zitat Aung HT et al (2006) LPS regulates proinflammatory gene expression in macrophages by altering histone deacetylase expression. FASEB J 20(9):1315–1327CrossRefPubMed Aung HT et al (2006) LPS regulates proinflammatory gene expression in macrophages by altering histone deacetylase expression. FASEB J 20(9):1315–1327CrossRefPubMed
49.
Zurück zum Zitat De Santa F et al (2009) Jmjd3 contributes to the control of gene expression in LPS-activated macrophages. EMBO J 28(21):3341–3352CrossRef De Santa F et al (2009) Jmjd3 contributes to the control of gene expression in LPS-activated macrophages. EMBO J 28(21):3341–3352CrossRef
52.
Zurück zum Zitat Satoh T et al (2010) The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol 11(10):936–944CrossRefPubMed Satoh T et al (2010) The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol 11(10):936–944CrossRefPubMed
54.
Zurück zum Zitat Wu HP et al (2008) The interleukin-4 expression in patients with severe sepsis. J Crit Care 23(4):519–524CrossRefPubMed Wu HP et al (2008) The interleukin-4 expression in patients with severe sepsis. J Crit Care 23(4):519–524CrossRefPubMed
55.
Zurück zum Zitat Ghisletti S et al (2010) Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity 32(3):317–328CrossRefPubMed Ghisletti S et al (2010) Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity 32(3):317–328CrossRefPubMed
56.
Zurück zum Zitat Gross TJ et al (2014) Epigenetic silencing of the human NOS2 gene: rethinking the role of nitric oxide in human macrophage inflammatory responses. J Immunol 192(5):2326–2338PubMedCentralCrossRefPubMed Gross TJ et al (2014) Epigenetic silencing of the human NOS2 gene: rethinking the role of nitric oxide in human macrophage inflammatory responses. J Immunol 192(5):2326–2338PubMedCentralCrossRefPubMed
57.
58.
59.
Zurück zum Zitat Natoli G (2010) Maintaining cell identity through global control of genomic organization. Immunity 33(1):12–24CrossRefPubMed Natoli G (2010) Maintaining cell identity through global control of genomic organization. Immunity 33(1):12–24CrossRefPubMed
60.
Zurück zum Zitat Ostuni R et al (2013) Latent enhancers activated by stimulation in differentiated cells. Cell 152(1–2):157–171 Ostuni R et al (2013) Latent enhancers activated by stimulation in differentiated cells. Cell 152(1–2):157–171
62.
Zurück zum Zitat Guisset O et al (2007) Decrease in circulating dendritic cells predicts fatal outcome in septic shock. Intensive Care Med 33(1):148–152CrossRefPubMed Guisset O et al (2007) Decrease in circulating dendritic cells predicts fatal outcome in septic shock. Intensive Care Med 33(1):148–152CrossRefPubMed
63.
Zurück zum Zitat Efron PA et al (2004) Characterization of the systemic loss of dendritic cells in murine lymph nodes during polymicrobial sepsis. J Immunol 173(5):3035–3043CrossRefPubMed Efron PA et al (2004) Characterization of the systemic loss of dendritic cells in murine lymph nodes during polymicrobial sepsis. J Immunol 173(5):3035–3043CrossRefPubMed
64.
Zurück zum Zitat Tinsley KW et al (2003) Sepsis induces apoptosis and profound depletion of splenic interdigitating and follicular dendritic cells. J Immunol 171(2):909–914CrossRefPubMed Tinsley KW et al (2003) Sepsis induces apoptosis and profound depletion of splenic interdigitating and follicular dendritic cells. J Immunol 171(2):909–914CrossRefPubMed
65.
Zurück zum Zitat Faivre V et al (2007) Accelerated in vitro differentiation of blood monocytes into dendritic cells in human sepsis. Clin Exp Immunol 147(3):426–439PubMedCentralCrossRefPubMed Faivre V et al (2007) Accelerated in vitro differentiation of blood monocytes into dendritic cells in human sepsis. Clin Exp Immunol 147(3):426–439PubMedCentralCrossRefPubMed
66.
Zurück zum Zitat Wen H et al (2008) Epigenetic regulation of dendritic cell-derived interleukin-12 facilitates immunosuppression after a severe innate immune response. Blood 111(4):1797–1804PubMedCentralCrossRefPubMed Wen H et al (2008) Epigenetic regulation of dendritic cell-derived interleukin-12 facilitates immunosuppression after a severe innate immune response. Blood 111(4):1797–1804PubMedCentralCrossRefPubMed
67.
Zurück zum Zitat Baguet A, Bix M (2004) Chromatin landscape dynamics of the Il4-Il13 locus during T helper 1 and 2 development. Proc Natl Acad Sci U S A 101(31):11410–11415PubMedCentralCrossRefPubMed Baguet A, Bix M (2004) Chromatin landscape dynamics of the Il4-Il13 locus during T helper 1 and 2 development. Proc Natl Acad Sci U S A 101(31):11410–11415PubMedCentralCrossRefPubMed
68.
Zurück zum Zitat Avni O et al (2002) T(H) cell differentiation is accompanied by dynamic changes in histone acetylation of cytokine genes. Nat Immunol 3(7):643–651PubMed Avni O et al (2002) T(H) cell differentiation is accompanied by dynamic changes in histone acetylation of cytokine genes. Nat Immunol 3(7):643–651PubMed
69.
Zurück zum Zitat Carson WF 4th et al (2010) Impaired CD4+ T-cell proliferation and effector function correlates with repressive histone methylation events in a mouse model of severe sepsis. Eur J Immunol 40(4):998–1010PubMedCentralCrossRefPubMed Carson WF 4th et al (2010) Impaired CD4+ T-cell proliferation and effector function correlates with repressive histone methylation events in a mouse model of severe sepsis. Eur J Immunol 40(4):998–1010PubMedCentralCrossRefPubMed
70.
Zurück zum Zitat Hall MW et al (2011) Immunoparalysis and nosocomial infection in children with multiple organ dysfunction syndrome. Intensive Care Med 37(3):525–532CrossRefPubMed Hall MW et al (2011) Immunoparalysis and nosocomial infection in children with multiple organ dysfunction syndrome. Intensive Care Med 37(3):525–532CrossRefPubMed
71.
Zurück zum Zitat Meisel C et al (2009) Granulocyte-macrophage colony-stimulating factor to reverse sepsis-associated immunosuppression: a double-blind, randomized, placebo-controlled multicenter trial. Am J Respir Crit Care Med 180(7):640–648CrossRefPubMed Meisel C et al (2009) Granulocyte-macrophage colony-stimulating factor to reverse sepsis-associated immunosuppression: a double-blind, randomized, placebo-controlled multicenter trial. Am J Respir Crit Care Med 180(7):640–648CrossRefPubMed
72.
Zurück zum Zitat Hershman MJ et al (1989) Interferon-gamma treatment increases HLA-DR expression on monocytes in severely injured patients. Clin Exp Immunol 77(1):67–70PubMedCentralPubMed Hershman MJ et al (1989) Interferon-gamma treatment increases HLA-DR expression on monocytes in severely injured patients. Clin Exp Immunol 77(1):67–70PubMedCentralPubMed
73.
Zurück zum Zitat Unsinger J et al (2010) IL-7 promotes T cell viability, trafficking, and functionality and improves survival in sepsis. J Immunol 184(7):3768–3779PubMedCentralCrossRefPubMed Unsinger J et al (2010) IL-7 promotes T cell viability, trafficking, and functionality and improves survival in sepsis. J Immunol 184(7):3768–3779PubMedCentralCrossRefPubMed
74.
Zurück zum Zitat Levy Y et al (2012) Effects of recombinant human interleukin 7 on T-cell recovery and thymic output in HIV-infected patients receiving antiretroviral therapy: results of a phase I/IIa randomized, placebo-controlled, multicenter study. Clin Infect Dis 55(2):291–300PubMedCentralCrossRefPubMed Levy Y et al (2012) Effects of recombinant human interleukin 7 on T-cell recovery and thymic output in HIV-infected patients receiving antiretroviral therapy: results of a phase I/IIa randomized, placebo-controlled, multicenter study. Clin Infect Dis 55(2):291–300PubMedCentralCrossRefPubMed
75.
Zurück zum Zitat Pellegrini M et al (2011) IL-7 engages multiple mechanisms to overcome chronic viral infection and limit organ pathology. Cell 144(4):601–613CrossRefPubMed Pellegrini M et al (2011) IL-7 engages multiple mechanisms to overcome chronic viral infection and limit organ pathology. Cell 144(4):601–613CrossRefPubMed
76.
Zurück zum Zitat Ciarlo E, Savva A, Roger T (2013) Epigenetics in sepsis: targeting histone deacetylases. Int J Antimicrob Agents 42(Suppl):S8–S12CrossRefPubMed Ciarlo E, Savva A, Roger T (2013) Epigenetics in sepsis: targeting histone deacetylases. Int J Antimicrob Agents 42(Suppl):S8–S12CrossRefPubMed
77.
Zurück zum Zitat Vigushin DM et al (2001) Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo. Clin Cancer Res 7(4):971–976PubMed Vigushin DM et al (2001) Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo. Clin Cancer Res 7(4):971–976PubMed
78.
79.
Zurück zum Zitat Leoni F et al (2005) The histone deacetylase inhibitor ITF2357 reduces production of pro-inflammatory cytokines in vitro and systemic inflammation in vivo. Mol Med 11(1–12):1–15 Leoni F et al (2005) The histone deacetylase inhibitor ITF2357 reduces production of pro-inflammatory cytokines in vitro and systemic inflammation in vivo. Mol Med 11(1–12):1–15
80.
Zurück zum Zitat Leoni F et al (2002) The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits antiinflammatory properties via suppression of cytokines. Proc Natl Acad Sci U S A 99(5):2995–3000PubMedCentralCrossRefPubMed Leoni F et al (2002) The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits antiinflammatory properties via suppression of cytokines. Proc Natl Acad Sci U S A 99(5):2995–3000PubMedCentralCrossRefPubMed
81.
Zurück zum Zitat Mombelli M et al (2011) Histone deacetylase inhibitors impair antibacterial defenses of macrophages. J Infect Dis 204(9):1367–1374CrossRefPubMed Mombelli M et al (2011) Histone deacetylase inhibitors impair antibacterial defenses of macrophages. J Infect Dis 204(9):1367–1374CrossRefPubMed
82.
Zurück zum Zitat LeRoy G, Rickards B, Flint SJ (2008) The double bromodomain proteins Brd2 and Brd3 couple histone acetylation to transcription. Mol Cell 30(1):51–60PubMedCentralCrossRefPubMed LeRoy G, Rickards B, Flint SJ (2008) The double bromodomain proteins Brd2 and Brd3 couple histone acetylation to transcription. Mol Cell 30(1):51–60PubMedCentralCrossRefPubMed
83.
Zurück zum Zitat Yang Z et al (2005) Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol Cell 19(4):535–545CrossRefPubMed Yang Z et al (2005) Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol Cell 19(4):535–545CrossRefPubMed
84.
Zurück zum Zitat Nicodeme E et al (2010) Suppression of inflammation by a synthetic histone mimic. Nature 468(7327):1119–1123CrossRefPubMed Nicodeme E et al (2010) Suppression of inflammation by a synthetic histone mimic. Nature 468(7327):1119–1123CrossRefPubMed
85.
Zurück zum Zitat Dellinger RP et al (2013) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 41(2):580–637CrossRefPubMed Dellinger RP et al (2013) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 41(2):580–637CrossRefPubMed
86.
Zurück zum Zitat Gentile LF et al (2012) Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care. J Trauma Acute Care Surg 72(6):1491–1501PubMedCentralCrossRefPubMed Gentile LF et al (2012) Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care. J Trauma Acute Care Surg 72(6):1491–1501PubMedCentralCrossRefPubMed
87.
Zurück zum Zitat Ward NS, Casserly B, Ayala A (2008) The compensatory anti-inflammatory response syndrome (CARS) in critically ill patients. Clin Chest Med 29(4):617–625, viiiPubMedCentralCrossRefPubMed Ward NS, Casserly B, Ayala A (2008) The compensatory anti-inflammatory response syndrome (CARS) in critically ill patients. Clin Chest Med 29(4):617–625, viiiPubMedCentralCrossRefPubMed
Metadaten
Titel
Epigenetische Regulation in der Sepsis
Aktueller Wissensstand
verfasst von
Dr. Sebastian Weiterer
Florian Uhle
Benedikt H. Siegler
Christoph Lichtenstern
Marek Bartkuhn
Markus A. Weigand Weigand
Publikationsdatum
01.10.2015
Verlag
Springer Vienna
Erschienen in
Wiener klinisches Magazin / Ausgabe 5/2015
Print ISSN: 1869-1757
Elektronische ISSN: 1613-7817
DOI
https://doi.org/10.1007/s00740-015-0064-3

Weitere Artikel der Ausgabe 5/2015

Wiener klinisches Magazin 5/2015 Zur Ausgabe

Panorama

Panorama