Skip to main content
Erschienen in: Wiener klinische Wochenschrift 1-2/2023

31.08.2022 | original article

Effect of intravenous ferric carboxymaltose on exercise capacity and quality of life in patients with COPD

A pilot study

verfasst von: Erwin Grasmuk-Siegl, MD, Matthias Helmuth Urban, MD, Sebastian Scherrer, MD, Georg-Christian Funk, MD

Erschienen in: Wiener klinische Wochenschrift | Ausgabe 1-2/2023

Einloggen, um Zugang zu erhalten

Summary

Background and objective

Chronic obstructive pulmonary disease (COPD) is associated with reduced exercise capacity. In COPD iron deficiency is found in up to 50% of patients and may impair exercise capacity, the potential therapeutic effect is yet unknown. We aimed to estimate the beneficial effect of intravenous ferric carboxymaltose on exercise capacity and quality of life in patients with COPD.

Methods

In this non-randomized, interrupted time series pilot trial we enrolled outpatients with stable COPD (GOLD II and III) and nonanemic iron deficiency (i.e., ferritin level < 100 μg/l or ferritin level 100–300 μg/l if transferrin saturation < 20%). Patients with cardiovascular-or inflammatory diseases were excluded. Participants performed 6‑minute walking test (6-MWT) and cardiopulmonary exercise testing (CPET) and completed the St. George’s Respiratory Questionnaire (SGRQ).

Results

From 35 screened patients, 11 (72% male, 63 ± 8 years, FEV1%predicted 44 ± 14) were included. Mean ferritin and hemoglobin were 70 ± 41 µg/l and 13.8 ± 1.7 g/dl, respectively. Four weeks after iron administration the 6‑MWT distance increased by 34.7 ± 34.4 m (95% CI, 10.0–59.3); p = 0.011. The VO2max increased by 1.87 ± 1.2 ml/kg/min (95% CI, 0.76–3); p = 0.006. Mean score of SGRQ was reduced by 7.56 ± 6.12 units (95% CI, 3 to 11); p = 0.004. The insignificant alteration in hemoglobin did not correlate with increase in exercise capacity.

Conclusion

Administration of intravenous iron was associated with improved exercise capacity and quality of life in stable COPD patients independent of hemoglobin. Our data provide a basis to calculate a statistically sufficient sample size for a randomized controlled follow-up study.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Killian, et al. Exercise capacity and ventilatory, circulatory and symptom limitation in patients in chronic airflow limitation. Am Rev Respir Dis. 1992;146(4):935–40.CrossRef Killian, et al. Exercise capacity and ventilatory, circulatory and symptom limitation in patients in chronic airflow limitation. Am Rev Respir Dis. 1992;146(4):935–40.CrossRef
2.
Zurück zum Zitat Engelen, et al. Skeletal muscle weakness is associated with wasting of extremity fat-free mass but not with airflow obstruction in patients with chronic obstructive pulmonary disease. Am J Clin Nutr. 2000;71(3):733–8.CrossRef Engelen, et al. Skeletal muscle weakness is associated with wasting of extremity fat-free mass but not with airflow obstruction in patients with chronic obstructive pulmonary disease. Am J Clin Nutr. 2000;71(3):733–8.CrossRef
3.
Zurück zum Zitat Gosker HR, et al. Striking similarities in systemic factors contributing to decreased exercise capacity in patients with severe chronic heart failure or COPD. Chest. 2003;123(5):1416–24.CrossRef Gosker HR, et al. Striking similarities in systemic factors contributing to decreased exercise capacity in patients with severe chronic heart failure or COPD. Chest. 2003;123(5):1416–24.CrossRef
4.
Zurück zum Zitat Gosker HR, et al. Skeletal muscle dysfunction in chronic obstructive pulmonary disease and chronic heart failure: underlying mechanisms and therapy perspectives. Am J Clin Nutr. 1999;71:1033–47.CrossRef Gosker HR, et al. Skeletal muscle dysfunction in chronic obstructive pulmonary disease and chronic heart failure: underlying mechanisms and therapy perspectives. Am J Clin Nutr. 1999;71:1033–47.CrossRef
5.
Zurück zum Zitat Casburi R. Skeletal muscle dysfunction and chronic obstructive pulmonry disease. Med Sci Sports Exerc. 2011;33(7 Suppl):S662–S70. Casburi R. Skeletal muscle dysfunction and chronic obstructive pulmonry disease. Med Sci Sports Exerc. 2011;33(7 Suppl):S662–S70.
6.
Zurück zum Zitat Anker SD, Colet JC, Filippatos G, Willenheimer R, Dickstein K, Drexler H, et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med. 2009;361(25):2436–48.CrossRef Anker SD, Colet JC, Filippatos G, Willenheimer R, Dickstein K, Drexler H, et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med. 2009;361(25):2436–48.CrossRef
7.
Zurück zum Zitat Harridge SD, Bottinelli R, Canepari M, Pellegrino MA, Reggiani C, Esbjörnsson M, Saltinet B. Whole-muscle and single-fibre contractile properties and myosin heavy chain isoforms in humans. Pfflugers Arch. 1996;432:913–20.CrossRef Harridge SD, Bottinelli R, Canepari M, Pellegrino MA, Reggiani C, Esbjörnsson M, Saltinet B. Whole-muscle and single-fibre contractile properties and myosin heavy chain isoforms in humans. Pfflugers Arch. 1996;432:913–20.CrossRef
8.
Zurück zum Zitat Harridge SDR. Plasticity of human skeletal muscle:gene expression to in vivo function. Exp Physiol. 2007;92(5):783–97.CrossRef Harridge SDR. Plasticity of human skeletal muscle:gene expression to in vivo function. Exp Physiol. 2007;92(5):783–97.CrossRef
9.
Zurück zum Zitat Beilschmidt LK, Puccio HM. Mammilian Fe‑S cluster biogenesis and its implication in disease. Biochimie. 2014;100:48–60.CrossRef Beilschmidt LK, Puccio HM. Mammilian Fe‑S cluster biogenesis and its implication in disease. Biochimie. 2014;100:48–60.CrossRef
10.
Zurück zum Zitat Lanza IR, Sreekumaran N. Mitochondrial metabolic function assessed in vivo and in vitro. Curr Opin Clin Nutr Metab Care. 2010;13(5):511–7.CrossRef Lanza IR, Sreekumaran N. Mitochondrial metabolic function assessed in vivo and in vitro. Curr Opin Clin Nutr Metab Care. 2010;13(5):511–7.CrossRef
11.
Zurück zum Zitat Lanza IR, et al. Endurance exercise as a countermeasure for aging. Diabetes. 2008;57:2933–42.CrossRef Lanza IR, et al. Endurance exercise as a countermeasure for aging. Diabetes. 2008;57:2933–42.CrossRef
12.
Zurück zum Zitat Tong WH, Rouault TA. Function of mitochondrial ISCU and cytosolic ISCU in mammalian iron-sulfur cluster biogenesis and iron homeostasis. Cell Metab. 2006;3(3):199–210.CrossRef Tong WH, Rouault TA. Function of mitochondrial ISCU and cytosolic ISCU in mammalian iron-sulfur cluster biogenesis and iron homeostasis. Cell Metab. 2006;3(3):199–210.CrossRef
13.
Zurück zum Zitat al et LSC. Mutations in LYRM4, encoding iron-sulfur cluster biogenesis factor ISD 11, cause deficiency of multiple respiatory chain complexes. Hum Mol Genet. 2013;22(22):4460–73.CrossRef al et LSC. Mutations in LYRM4, encoding iron-sulfur cluster biogenesis factor ISD 11, cause deficiency of multiple respiatory chain complexes. Hum Mol Genet. 2013;22(22):4460–73.CrossRef
14.
Zurück zum Zitat Panday A, Pain J, Ghosh AK, Dancis A, Pain D. Fe‑S cluster biogenesis in isolated mammalian mitochondria: coordinated use of persulfide sulfur and iron and requirements for GTP, NADH and ATP. J Biol Chem. 2015;290(1):640–57.CrossRef Panday A, Pain J, Ghosh AK, Dancis A, Pain D. Fe‑S cluster biogenesis in isolated mammalian mitochondria: coordinated use of persulfide sulfur and iron and requirements for GTP, NADH and ATP. J Biol Chem. 2015;290(1):640–57.CrossRef
15.
Zurück zum Zitat Cloonan SM, Mumby S, Adcock IM, Choi AMK, Chung KF, Quinlan GJ. The “iron”-y of iron overload and iron deficiency in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2017;196(9):1103–12.CrossRef Cloonan SM, Mumby S, Adcock IM, Choi AMK, Chung KF, Quinlan GJ. The “iron”-y of iron overload and iron deficiency in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2017;196(9):1103–12.CrossRef
18.
Zurück zum Zitat Jones NL, Makrides L, Hitchcock C, Chypchar T, McCartney N. Normal standards for an incremental progressive cycle ergometer test. Am Rev Respir Dis. 1985;131(5):700–8. Jones NL, Makrides L, Hitchcock C, Chypchar T, McCartney N. Normal standards for an incremental progressive cycle ergometer test. Am Rev Respir Dis. 1985;131(5):700–8.
19.
Zurück zum Zitat Lopes AJ, Vigário PS, Hora AL, Deus CA, Soares MS, Guimaraes FS, et al. Ventilation distribution, pulmonary diffusion and peripheral muscle endurance as determinants of exercise intolerance in elderly patients with chronic obstructive pulmonary disease. Physiol Res. 2018;67(6):863–74.CrossRef Lopes AJ, Vigário PS, Hora AL, Deus CA, Soares MS, Guimaraes FS, et al. Ventilation distribution, pulmonary diffusion and peripheral muscle endurance as determinants of exercise intolerance in elderly patients with chronic obstructive pulmonary disease. Physiol Res. 2018;67(6):863–74.CrossRef
20.
Zurück zum Zitat Weatherall M, Marsh S, Shirtcliffe P, Williams M, Travers J, Beasley R. Quality of life measured by the St george’s respiratory questionnaire and spirometry. Eur Respir J. 2009;33(5):1025–30.CrossRef Weatherall M, Marsh S, Shirtcliffe P, Williams M, Travers J, Beasley R. Quality of life measured by the St george’s respiratory questionnaire and spirometry. Eur Respir J. 2009;33(5):1025–30.CrossRef
21.
Zurück zum Zitat Nickol A, et al. A cross-sectional study of the prevalence and associations of iron deficiency in a cohort of patients with chronic obstructive pulmonary disease. BMJ Open. 2015;5:e7911.CrossRef Nickol A, et al. A cross-sectional study of the prevalence and associations of iron deficiency in a cohort of patients with chronic obstructive pulmonary disease. BMJ Open. 2015;5:e7911.CrossRef
22.
Zurück zum Zitat Nanas J, Matsouka C, Karageorgopoulos D, Leonti A, Tsolakis E, Drakos S, et al. Etiology of anemia in patients with advanced heart failure. J Am Coll Cardiol. 2006;48(12):2485–9.CrossRef Nanas J, Matsouka C, Karageorgopoulos D, Leonti A, Tsolakis E, Drakos S, et al. Etiology of anemia in patients with advanced heart failure. J Am Coll Cardiol. 2006;48(12):2485–9.CrossRef
23.
Zurück zum Zitat Zhu Y, Haas J. Altered metabolic response of iron-depleted nonanemic women during a 15-km time trial. J Appl Physiol. 1998;84(5):1768–75.CrossRef Zhu Y, Haas J. Altered metabolic response of iron-depleted nonanemic women during a 15-km time trial. J Appl Physiol. 1998;84(5):1768–75.CrossRef
24.
Zurück zum Zitat Jones SE, et al. Sarcopenia in COPD: prevalence, clinical correlates and response to pulmonary rehabilitation. Thorax. 2015;70(3):213–8.CrossRef Jones SE, et al. Sarcopenia in COPD: prevalence, clinical correlates and response to pulmonary rehabilitation. Thorax. 2015;70(3):213–8.CrossRef
26.
Zurück zum Zitat Fermont JM, Masconi KL, Jensen MT, Ferrari R, Di Lorenzo VAP, Marott JM, et al. Biomarkers and clinical outcomes in COPD: a systematic review and meta-analysis. Thorax. 2019;74(5):439–46.CrossRef Fermont JM, Masconi KL, Jensen MT, Ferrari R, Di Lorenzo VAP, Marott JM, et al. Biomarkers and clinical outcomes in COPD: a systematic review and meta-analysis. Thorax. 2019;74(5):439–46.CrossRef
27.
Zurück zum Zitat Singh SJ, Puhan MA, Andrianopoulos V, Hernandes NA, Mitchell KE, Hill CJ, et al. An official systematic review of the European Respiratory Society/American Thoracic Society: measurement properties of field walking tests in chronic respiratory disease. Eur Respir J. 2014;44:1447–78.CrossRef Singh SJ, Puhan MA, Andrianopoulos V, Hernandes NA, Mitchell KE, Hill CJ, et al. An official systematic review of the European Respiratory Society/American Thoracic Society: measurement properties of field walking tests in chronic respiratory disease. Eur Respir J. 2014;44:1447–78.CrossRef
28.
Zurück zum Zitat Polkey MI, Spruit MA, Edwards LD, Watkins ML, Pinto-Plata V, Vestbo J, et al. Six-minute-walk test in chronic obstructive pulmonary disease: minimal clinically important difference for death or hospitalization. Am J Respir Crit Care Med. 2013;187(4):382–6.CrossRef Polkey MI, Spruit MA, Edwards LD, Watkins ML, Pinto-Plata V, Vestbo J, et al. Six-minute-walk test in chronic obstructive pulmonary disease: minimal clinically important difference for death or hospitalization. Am J Respir Crit Care Med. 2013;187(4):382–6.CrossRef
29.
Zurück zum Zitat Puente-Maestu L, Palange P, Casaburi R, Laveneziana P, Maltais F, Neder JA, et al. Use of exercise testing in the evaluation of interventional efficacy: an official ERS statement Task Force Report in Press. 2016. Corrected Proof. Puente-Maestu L, Palange P, Casaburi R, Laveneziana P, Maltais F, Neder JA, et al. Use of exercise testing in the evaluation of interventional efficacy: an official ERS statement Task Force Report in Press. 2016. Corrected Proof.
31.
Zurück zum Zitat Dupont WD, Plummer WDJ. Power and sample size calculations. A review and computer program. Control Clin Trials. 1990;11(2):116–28.CrossRef Dupont WD, Plummer WDJ. Power and sample size calculations. A review and computer program. Control Clin Trials. 1990;11(2):116–28.CrossRef
Metadaten
Titel
Effect of intravenous ferric carboxymaltose on exercise capacity and quality of life in patients with COPD
A pilot study
verfasst von
Erwin Grasmuk-Siegl, MD
Matthias Helmuth Urban, MD
Sebastian Scherrer, MD
Georg-Christian Funk, MD
Publikationsdatum
31.08.2022
Verlag
Springer Vienna
Erschienen in
Wiener klinische Wochenschrift / Ausgabe 1-2/2023
Print ISSN: 0043-5325
Elektronische ISSN: 1613-7671
DOI
https://doi.org/10.1007/s00508-022-02073-4

Weitere Artikel der Ausgabe 1-2/2023

Wiener klinische Wochenschrift 1-2/2023 Zur Ausgabe

mitteilungen der gesellschaft der ärzte in wien

Blick auf eine wechselvolle Geschichte

MUW researcher of the month

MUW researcher of the month