Skip to main content
Erschienen in: Spektrum der Augenheilkunde 1/2023

01.12.2022 | original article

Corneal biomechanical assessment via ocular response analyzer following intravitreal aflibercept therapy

verfasst von: Betul Onal Gunay, MD, Cenap Mahmut Esenulku

Erschienen in: Spektrum der Augenheilkunde | Ausgabe 1/2023

Einloggen, um Zugang zu erhalten

Summary

Background

To assess changes in corneal biomechanical parameters measured by the Ocular Response Analyzer device (ORA, Reichert Inc., Depew, NY, USA) before and on the first day and the first week following intravitreal aflibercept (IVA) injection.

Methods

In this retrospective cross-sectional study, intraocular pressure (Goldmann applanation tonometry, IOPgat), ORA measurements (Goldmann-correlated intraocular pressure [IOPg], corneal-compensated IOP [IOPcc], corneal resistance factor [CRF], and corneal hysteresis) were made. Also, pachymetry and ocular biometric examination (anterior chamber depth, axial length, and lens thickness) were performed. Data before and on the first day and the first week after IVA injection were compared.

Results

In total, 51 patients (20 female [39.2%] and 31 male [60.8%]) were enrolled in the study. The mean age was 69.51 ± 8.43 years. Indication for IVA treatment was age-related macular degeneration in 22 patients (43.1%) and retinal vein occlusion in 29 patients (56.9%). No significant differences were observed following IVA in terms of central corneal thickness (p = 0.40), axial length (p = 0.80), anterior chamber depth (p = 0.69), and lens thickness (p = 0.49). IOPgat significantly reduced on the first day after IVA (13.3 mm Hg to 11.8 mm Hg; p < 0.001). A decrease in CRF was observed on the first day following IVA (9.94 to 9.38; p = 0.03). Furthermore, CRF and IOPgat were positively correlated at baseline and on the first day and the first week after IVA.

Conclusion

Intravitreal aflibercept treatment induces corneal biomechanical alterations that might be associated with IOP change following IVA injection.
Literatur
1.
Zurück zum Zitat Falavarjani KG, Nguyen QD. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye (Lond). 2013;27:787–94.CrossRef Falavarjani KG, Nguyen QD. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye (Lond). 2013;27:787–94.CrossRef
2.
Zurück zum Zitat Dedania VS, Bakri SJ. Systemic safety of intravitreal anti-vascular endothelial growth factor agents in age-related macular degeneration. Curr Opin Ophthalmol. 2016;27:224–43.CrossRef Dedania VS, Bakri SJ. Systemic safety of intravitreal anti-vascular endothelial growth factor agents in age-related macular degeneration. Curr Opin Ophthalmol. 2016;27:224–43.CrossRef
3.
Zurück zum Zitat Torres-Costa S, Ramos D, Brandão E, Carneiro Â, Rosas V, Rocha-Sousa A, et al. Incidence of endophthalmitis after intravitreal injection with and without topical antibiotic prophylaxis. Eur J Ophthalmol. 2021;31(2):600–6.CrossRef Torres-Costa S, Ramos D, Brandão E, Carneiro Â, Rosas V, Rocha-Sousa A, et al. Incidence of endophthalmitis after intravitreal injection with and without topical antibiotic prophylaxis. Eur J Ophthalmol. 2021;31(2):600–6.CrossRef
4.
Zurück zum Zitat Tolentino M. Systemic and ocular safety of intravitreal anti-VEGF therapies for ocular neovascular disease. Surv Ophthalmol. 2011;56:95–113.CrossRef Tolentino M. Systemic and ocular safety of intravitreal anti-VEGF therapies for ocular neovascular disease. Surv Ophthalmol. 2011;56:95–113.CrossRef
5.
Zurück zum Zitat Meyer CH, Michels S, Rodrigues EB, Hager A, Mennel S, Schmidt JC, et al. Incidence of rhegmatogenous retinal detachments after intravitreal antivascular endothelial factor injections. Acta Ophthalmol. 2011;89:70–5.CrossRef Meyer CH, Michels S, Rodrigues EB, Hager A, Mennel S, Schmidt JC, et al. Incidence of rhegmatogenous retinal detachments after intravitreal antivascular endothelial factor injections. Acta Ophthalmol. 2011;89:70–5.CrossRef
6.
Zurück zum Zitat Baek SU, Park IW, Suh W. Long-term intraocular pressure changes after intravitreal injection of bevacizumab. Cutan Ocul Toxicol. 2016;35:310–4.CrossRef Baek SU, Park IW, Suh W. Long-term intraocular pressure changes after intravitreal injection of bevacizumab. Cutan Ocul Toxicol. 2016;35:310–4.CrossRef
7.
Zurück zum Zitat Kling S, Hafezi F. Corneal biomechanics—a review. Ophthalmic Physiol Opt. 2017;37:240–52.CrossRef Kling S, Hafezi F. Corneal biomechanics—a review. Ophthalmic Physiol Opt. 2017;37:240–52.CrossRef
8.
Zurück zum Zitat Piñero DP, Alcón N. Corneal biomechanics: a review. Clin Exp Optom. 2015;98:107–16.CrossRef Piñero DP, Alcón N. Corneal biomechanics: a review. Clin Exp Optom. 2015;98:107–16.CrossRef
9.
Zurück zum Zitat Shoeibi N, Ansari-Astaneh MR, Sedaghat MR, Shokoohi Rad S. Effect of intravitreal bevacizumab injection on corneal in vivo biomechanics: a pilot study. J Ophthalmic Vis Res. 2019;14:151–6.CrossRef Shoeibi N, Ansari-Astaneh MR, Sedaghat MR, Shokoohi Rad S. Effect of intravitreal bevacizumab injection on corneal in vivo biomechanics: a pilot study. J Ophthalmic Vis Res. 2019;14:151–6.CrossRef
10.
Zurück zum Zitat Bekmez S, Cakmak H, Kocaturk T, Cantas F, Dundar S. Biomechanical properties of the cornea following intravitreal ranibizumab injection. Graefes Arch Clin Exp Ophthalmol. 2021;259:691–6.CrossRef Bekmez S, Cakmak H, Kocaturk T, Cantas F, Dundar S. Biomechanical properties of the cornea following intravitreal ranibizumab injection. Graefes Arch Clin Exp Ophthalmol. 2021;259:691–6.CrossRef
11.
Zurück zum Zitat Goktas A, Goktas S, Atas M, Demircan S, Yurtsever Y. Short-term impact of intravitreal ranibizumab injection on axial ocular dimension and intraocular pressure. Cutan Ocul Toxicol. 2013;32:23–6.CrossRef Goktas A, Goktas S, Atas M, Demircan S, Yurtsever Y. Short-term impact of intravitreal ranibizumab injection on axial ocular dimension and intraocular pressure. Cutan Ocul Toxicol. 2013;32:23–6.CrossRef
12.
Zurück zum Zitat Kymionis GD, Giarmoukakis A, Apostolidi IK, Blazaki SV, Tsoulnaras KI, Moschandrea J, et al. Optical biometry derived axial length measurements following Intravitreal anti-vascular endothelial growth factor treatment for macular edema. Semin Ophthalmol. 2018;33:488–91.CrossRef Kymionis GD, Giarmoukakis A, Apostolidi IK, Blazaki SV, Tsoulnaras KI, Moschandrea J, et al. Optical biometry derived axial length measurements following Intravitreal anti-vascular endothelial growth factor treatment for macular edema. Semin Ophthalmol. 2018;33:488–91.CrossRef
13.
Zurück zum Zitat Bracha P, Moore NA, Ciulla TA, WuDunn D, Cantor LB. The acute and chronic effects of intravitreal anti-vascular endothelial growth factor injections on intraocular pressure: a review. Surv Ophthalmol. 2018;63:281–95.CrossRef Bracha P, Moore NA, Ciulla TA, WuDunn D, Cantor LB. The acute and chronic effects of intravitreal anti-vascular endothelial growth factor injections on intraocular pressure: a review. Surv Ophthalmol. 2018;63:281–95.CrossRef
14.
Zurück zum Zitat Cui QN, Gray IN, Yu Y, VanderBeek BL. Repeated intravitreal injections of antivascular endothelial growth factors and risk of intraocular pressure medication use. Graefes Arch Clin Exp Ophthalmol. 2019;257:1931–9.CrossRef Cui QN, Gray IN, Yu Y, VanderBeek BL. Repeated intravitreal injections of antivascular endothelial growth factors and risk of intraocular pressure medication use. Graefes Arch Clin Exp Ophthalmol. 2019;257:1931–9.CrossRef
15.
Zurück zum Zitat Atchison EA, Wood KM, Mattox CG, Barry CN, Lum F, MacCumber MW. The real-world effect of intravitreous anti-vascular endothelial growth factor drugs on intraocular pressure: an analysis using the IRIS registry. Ophthalmology. 2018;125:676–82.CrossRef Atchison EA, Wood KM, Mattox CG, Barry CN, Lum F, MacCumber MW. The real-world effect of intravitreous anti-vascular endothelial growth factor drugs on intraocular pressure: an analysis using the IRIS registry. Ophthalmology. 2018;125:676–82.CrossRef
16.
Zurück zum Zitat Kahook MY, Ammar DA. In vitro effects of antivascular endothelial growth factors on cultured human trabecular meshwork cells. J Glaucoma. 2010;19:437–41.CrossRef Kahook MY, Ammar DA. In vitro effects of antivascular endothelial growth factors on cultured human trabecular meshwork cells. J Glaucoma. 2010;19:437–41.CrossRef
17.
Zurück zum Zitat Ford KM, Saint-Geniez M, Walshe TE, D’Amore PA. Expression and role of VEGF—a in the ciliary body. Invest Ophthalmol Vis Sci. 2012;53:7520–7.CrossRef Ford KM, Saint-Geniez M, Walshe TE, D’Amore PA. Expression and role of VEGF—a in the ciliary body. Invest Ophthalmol Vis Sci. 2012;53:7520–7.CrossRef
18.
Zurück zum Zitat Hashemi H, Jafarzadehpur E, Mehravaran S, Yekta A, Ostadimoghaddam H, Norouzirad R, et al. Corneal resistance factor and corneal hysteresis in a 6- to 18-year-old population. J Cataract Refract Surg. 2014;40:1446–53.CrossRef Hashemi H, Jafarzadehpur E, Mehravaran S, Yekta A, Ostadimoghaddam H, Norouzirad R, et al. Corneal resistance factor and corneal hysteresis in a 6- to 18-year-old population. J Cataract Refract Surg. 2014;40:1446–53.CrossRef
19.
Zurück zum Zitat Broman AT, Congdon NG, Bandeen-Roche K, Quigley HA. Influence of corneal structure, corneal responsiveness, and other ocular parameters on tonometric measurement of intraocular pressure. J Glaucoma. 2007;16:581–8.CrossRef Broman AT, Congdon NG, Bandeen-Roche K, Quigley HA. Influence of corneal structure, corneal responsiveness, and other ocular parameters on tonometric measurement of intraocular pressure. J Glaucoma. 2007;16:581–8.CrossRef
20.
Zurück zum Zitat Dackowski EK, Moon JY, Wang J, Shrivastava A, Schultz JS. The relationship between corneal biomechanics and Intraocular pressure dynamics in patients undergoing intravitreal injection. J Glaucoma. 2021;30:451–8.CrossRef Dackowski EK, Moon JY, Wang J, Shrivastava A, Schultz JS. The relationship between corneal biomechanics and Intraocular pressure dynamics in patients undergoing intravitreal injection. J Glaucoma. 2021;30:451–8.CrossRef
21.
Zurück zum Zitat Caruso A, Füth M, Alvarez-Sánchez R, Belli S, Diack C, Maass KF, et al. Ocular half-life of intravitreal biologics in humans and other species: meta-analysis and model-based prediction. Mol Pharm. 2020;17:695–709. Caruso A, Füth M, Alvarez-Sánchez R, Belli S, Diack C, Maass KF, et al. Ocular half-life of intravitreal biologics in humans and other species: meta-analysis and model-based prediction. Mol Pharm. 2020;17:695–709.
22.
Zurück zum Zitat Foster PJ, Broadway DC, Garway-Heath DF, Yip JL, Luben R, Hayat S, et al. Intraocular pressure and corneal biomechanics in an adult British population: the EPIC-Norfolk eye study. Invest Ophthalmol Vis Sci. 2011;52:8179–85.CrossRef Foster PJ, Broadway DC, Garway-Heath DF, Yip JL, Luben R, Hayat S, et al. Intraocular pressure and corneal biomechanics in an adult British population: the EPIC-Norfolk eye study. Invest Ophthalmol Vis Sci. 2011;52:8179–85.CrossRef
23.
Zurück zum Zitat Terai N, Raiskup F, Haustein M, Pillunat LE, Spoerl E. Identification of biomechanical properties of the cornea: the ocular response analyzer. Curr Eye Res. 2012;37:553–62.CrossRef Terai N, Raiskup F, Haustein M, Pillunat LE, Spoerl E. Identification of biomechanical properties of the cornea: the ocular response analyzer. Curr Eye Res. 2012;37:553–62.CrossRef
Metadaten
Titel
Corneal biomechanical assessment via ocular response analyzer following intravitreal aflibercept therapy
verfasst von
Betul Onal Gunay, MD
Cenap Mahmut Esenulku
Publikationsdatum
01.12.2022
Verlag
Springer Vienna
Erschienen in
Spektrum der Augenheilkunde / Ausgabe 1/2023
Print ISSN: 0930-4282
Elektronische ISSN: 1613-7523
DOI
https://doi.org/10.1007/s00717-022-00534-9