Skip to main content
Erschienen in: Wiener klinische Wochenschrift 15-16/2012

01.08.2012 | original article

Central venous to arterial pCO2 difference in cardiogenic shock

verfasst von: Andrej Markota, MD, Andreja Sinkovič, MD, PhD

Erschienen in: Wiener klinische Wochenschrift | Ausgabe 15-16/2012

Einloggen, um Zugang zu erhalten

Summary

In normal circumstances central venous to arterial pCO2 difference is approximately 1 kPa (7.5 mmHg). In shock states it is usually increased. We sought to evaluate the agreement between admission central venous to arterial pCO2 difference and mortality in patients with acute myocardial infarction and cardiogenic shock. We hypothesized that patients with higher central venous to arterial pCO2 difference on admission would have higher mortality. We retrospectively included 30 patients with acute myocardial infarction and cardiogenic shock (mean age 67 ± 10 years, 73 % men), of which 20 (67 %) died. Nonsignificant differences between survivors and nonsurvivors were observed in age, gender, admission mean blood pressure, heart rate, lactate, hemoglobin, peak troponin I, cardiopulmonary resuscitation, use of therapeutic hypothermia, vasopressors, inotropes, intraaortic balloon pump, and mechanical ventilation. A significant difference between survivors and nonsurvivors was observed in admission central venous to arterial pCO2 difference (1.35 ± 0.49 kPa vs. 0.83 ± 0.36 kPa, p = 0.003). In patients with admission central venous oxygen saturation over 70 %, we observed a significant difference in central venous to arterial pCO2 difference between survivors and nonsurvivors (1.33 ± 0.51 kPa vs. 0.7 ± 0.3 kPa, p = 0.003) and a nonsignificant difference between survivors and nonsurvivors in patients with admission central venous oxygen saturation under 70 % (1.38 ± 0.53 kPa vs. 1.25 ± 0.33 kPa, p = 0.37). Patients with decreased central venous to arterial pCO2 difference on admission seem to be at increased risk of dying even with admission central venous oxygen saturation over 70 %.
Literatur
1.
Zurück zum Zitat Lamia B, Monnet X, Teboul JL. Meaning of arterio-venous pCO2 difference in circulatory shock. Minerva Anestesiol. 2006;72(6):597–604.PubMed Lamia B, Monnet X, Teboul JL. Meaning of arterio-venous pCO2 difference in circulatory shock. Minerva Anestesiol. 2006;72(6):597–604.PubMed
2.
Zurück zum Zitat Vallée F, Vallet B, Mathe O, Parraguette J, Mari A, Silva S, etal. Central venous-to-arterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock? Intensive Care Med. 2008;34(12):2218–25.PubMedCrossRef Vallée F, Vallet B, Mathe O, Parraguette J, Mari A, Silva S, etal. Central venous-to-arterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock? Intensive Care Med. 2008;34(12):2218–25.PubMedCrossRef
3.
Zurück zum Zitat Durkin R, Gergits MA, Reed JF, Fitzgibbons J. The relationship between the arteriovenous carbon dioxide gradient and cardiac index. J Crit Care 1993;8(4):217–21.PubMedCrossRef Durkin R, Gergits MA, Reed JF, Fitzgibbons J. The relationship between the arteriovenous carbon dioxide gradient and cardiac index. J Crit Care 1993;8(4):217–21.PubMedCrossRef
4.
Zurück zum Zitat Cuschieri J, Rivers EP, Donnino MW, Katilius M, Jacobsen G, Nguyen HB, etal. Central venous-arterial carbon dioxide difference as an indicator of cardiac index. Intensive Care Med. 2005;31(6):818–22.PubMedCrossRef Cuschieri J, Rivers EP, Donnino MW, Katilius M, Jacobsen G, Nguyen HB, etal. Central venous-arterial carbon dioxide difference as an indicator of cardiac index. Intensive Care Med. 2005;31(6):818–22.PubMedCrossRef
5.
Zurück zum Zitat Takami Y, Masumoto H. Mixed venous-arterial CO2 tension gradient after cardiopulmonary bypass. Asian Cardiovasc Thorac Ann. 2005;13(3):255–60.PubMed Takami Y, Masumoto H. Mixed venous-arterial CO2 tension gradient after cardiopulmonary bypass. Asian Cardiovasc Thorac Ann. 2005;13(3):255–60.PubMed
6.
Zurück zum Zitat Yazigi A, Abou-Zeid H, Haddad F, Madi-Jebara S, Hayeck G, Jabbour K. Correlation between central venous-arterial carbon dioxide tension gradient and cardiac index changes following fluid therapy. Ann Card Anaesth. 2010;13(3):269–71.PubMedCrossRef Yazigi A, Abou-Zeid H, Haddad F, Madi-Jebara S, Hayeck G, Jabbour K. Correlation between central venous-arterial carbon dioxide tension gradient and cardiac index changes following fluid therapy. Ann Card Anaesth. 2010;13(3):269–71.PubMedCrossRef
7.
Zurück zum Zitat West JB, Wagner PD, Derks CM. Gas exchange in distributions of VA-Q ratios: Partial pressure-solubility diagram. J Appl Physiol. 1974;37(4):533–40.PubMed West JB, Wagner PD, Derks CM. Gas exchange in distributions of VA-Q ratios: Partial pressure-solubility diagram. J Appl Physiol. 1974;37(4):533–40.PubMed
8.
Zurück zum Zitat Mecher CE, Rackow EC, Astiz ME, Weil MH. Venous hypercarbia associated with severe sepsis and systemic hypoperfusion. Crit Care Med. 1990;18(6):585–9.PubMedCrossRef Mecher CE, Rackow EC, Astiz ME, Weil MH. Venous hypercarbia associated with severe sepsis and systemic hypoperfusion. Crit Care Med. 1990;18(6):585–9.PubMedCrossRef
9.
Zurück zum Zitat Bakker J, Vincent JL, Gris P, Leon M, Coffernils M, Kahn RJ. Veno-arterial carbon dioxide gradient in human septic shock. Chest 1992;101(2):509–15.PubMedCrossRef Bakker J, Vincent JL, Gris P, Leon M, Coffernils M, Kahn RJ. Veno-arterial carbon dioxide gradient in human septic shock. Chest 1992;101(2):509–15.PubMedCrossRef
10.
Zurück zum Zitat Wendon JA, Harrison PM, Keays R, Gimson AE, Alexander G, Williams R. Arterial-venous pH differences and tissue hypoxia in patients with fulminant hepatic failure. Crit Care Med. 1991;19(11):1362–4.PubMedCrossRef Wendon JA, Harrison PM, Keays R, Gimson AE, Alexander G, Williams R. Arterial-venous pH differences and tissue hypoxia in patients with fulminant hepatic failure. Crit Care Med. 1991;19(11):1362–4.PubMedCrossRef
11.
Zurück zum Zitat Inoue T, Sakai Y, Morooka S, Hayashi T, Takayanagi K, Yamaguchi H, et al. Venoarterial carbon dioxide tension gradient in acute heart failure. Cardiology 1993;82(6):383–7.PubMedCrossRef Inoue T, Sakai Y, Morooka S, Hayashi T, Takayanagi K, Yamaguchi H, et al. Venoarterial carbon dioxide tension gradient in acute heart failure. Cardiology 1993;82(6):383–7.PubMedCrossRef
12.
Zurück zum Zitat Dickstein K, Cohen-Solal A, Filippatos G, McMurray JJ, Ponikowski P, Poole-Wilson PA, et al. ESC Committee for Practice Guidelines (CPG) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: The task force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European society of cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur Heart J. 2008;29(19):2388–442.PubMedCrossRef Dickstein K, Cohen-Solal A, Filippatos G, McMurray JJ, Ponikowski P, Poole-Wilson PA, et al. ESC Committee for Practice Guidelines (CPG) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: The task force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European society of cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur Heart J. 2008;29(19):2388–442.PubMedCrossRef
13.
Zurück zum Zitat Johnson BA, Weil MH. Redefining ischemia due to circulatory failure as dual defects of oxygen deficits and of carbon dioxide excesses. Crit Care Med. 1991;19(11):1432–8.PubMedCrossRef Johnson BA, Weil MH. Redefining ischemia due to circulatory failure as dual defects of oxygen deficits and of carbon dioxide excesses. Crit Care Med. 1991;19(11):1432–8.PubMedCrossRef
14.
Zurück zum Zitat Polderman KH. Application of therapeutic hypothermia in the intensive care unit. Opportunities and pitfalls of a promising treatment modality-Part 2: Practical aspects and side effects. Intensive Care Med. 2004;30(5):757–69.PubMedCrossRef Polderman KH. Application of therapeutic hypothermia in the intensive care unit. Opportunities and pitfalls of a promising treatment modality-Part 2: Practical aspects and side effects. Intensive Care Med. 2004;30(5):757–69.PubMedCrossRef
15.
Zurück zum Zitat Kolar M, Krizmaric M, Klemen P, Grmec S. Partial pressure of end-tidal carbon dioxide successful predicts cardiopulmonary resuscitation in the field: a prospective observational study. Crit Care. 2008;12(5):R115.PubMedCrossRef Kolar M, Krizmaric M, Klemen P, Grmec S. Partial pressure of end-tidal carbon dioxide successful predicts cardiopulmonary resuscitation in the field: a prospective observational study. Crit Care. 2008;12(5):R115.PubMedCrossRef
16.
Zurück zum Zitat Zhang H, Vincent JL. Arteriovenous differences in pCO2 and pH are good indicators of critical hypoperfusion. Am Rev Respir Dis. 1993;148:867–71PubMedCrossRef Zhang H, Vincent JL. Arteriovenous differences in pCO2 and pH are good indicators of critical hypoperfusion. Am Rev Respir Dis. 1993;148:867–71PubMedCrossRef
17.
Zurück zum Zitat Levine RL, Wayne MA, Miller CC. End-tidal carbon dioxide and outcome of out-of-hospital cardiac arrest. N Engl J Med. 1997;337 (5):301–6.PubMedCrossRef Levine RL, Wayne MA, Miller CC. End-tidal carbon dioxide and outcome of out-of-hospital cardiac arrest. N Engl J Med. 1997;337 (5):301–6.PubMedCrossRef
Metadaten
Titel
Central venous to arterial pCO2 difference in cardiogenic shock
verfasst von
Andrej Markota, MD
Andreja Sinkovič, MD, PhD
Publikationsdatum
01.08.2012
Verlag
Springer Vienna
Erschienen in
Wiener klinische Wochenschrift / Ausgabe 15-16/2012
Print ISSN: 0043-5325
Elektronische ISSN: 1613-7671
DOI
https://doi.org/10.1007/s00508-012-0213-2

Weitere Artikel der Ausgabe 15-16/2012

Wiener klinische Wochenschrift 15-16/2012 Zur Ausgabe