Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Wiener Medizinische Wochenschrift 5-6/2021

22.02.2021 | main topic

Bone properties in osteogenesis imperfecta: what can we learn from a bone biopsy beyond histology?

verfasst von: Matthias Mähr, Dr. Stéphane Blouin, Dr. Barbara M. Misof, Dr. Eleftherios P. Paschalis, PD Dr. Markus A. Hartmann, Prim. PD Dr. Jochen Zwerina, PD Dr. Nadja Fratzl-Zelman

Erschienen in: Wiener Medizinische Wochenschrift | Ausgabe 5-6/2021

Einloggen, um Zugang zu erhalten
share
TEILEN

Summary

Transiliac bone biopsy samples are used to evaluate histology and bone cell activity in unclear pathological conditions. However, much additional information can be obtained from such bone samples. Using the example of osteogenesis imperfecta (OI), the current article describes how biopsy samples can be further used to study bone material characteristics including the degree of matrix mineralization, organic matrix properties, mineral particle size and bone nanoporosity. OI is a heritable collagen-related disorder that is phenotypically and genetically extremely heterogeneous. One essential finding was that OI bone is hypermineralized independently of clinical severity. Moreover, mineral particles in OI bone are of normal size or even smaller, but more densely packed than normally. Another recent finding was that in some forms of OI, collagen orientation is highly disorganized, indicating that the collagen–mineral particle network is profoundly altered in OI. These findings have contributed to the understanding of impaired bone strength in OI.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Abo für kostenpflichtige Inhalte

Literatur
1.
Zurück zum Zitat Van Dijk FS, Sillence DO. Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. Am J Med Genet A. 2014;164A(6):1470–81. CrossRef Van Dijk FS, Sillence DO. Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. Am J Med Genet A. 2014;164A(6):1470–81. CrossRef
2.
Zurück zum Zitat Fratzl-Zelman N, et al. Classification of osteogenesis imperfecta. Wien Med Wochenschr. 2015;165(13–14):264–70. CrossRef Fratzl-Zelman N, et al. Classification of osteogenesis imperfecta. Wien Med Wochenschr. 2015;165(13–14):264–70. CrossRef
3.
Zurück zum Zitat Forlino A, et al. New perspectives on osteogenesis imperfecta. Nat Rev Endocrinol. 2011;7(9):540–57. CrossRef Forlino A, et al. New perspectives on osteogenesis imperfecta. Nat Rev Endocrinol. 2011;7(9):540–57. CrossRef
4.
Zurück zum Zitat Marini JC, et al. Osteogenesis imperfecta. Nat Rev Dis Primers. 2017;3:17052. CrossRef Marini JC, et al. Osteogenesis imperfecta. Nat Rev Dis Primers. 2017;3:17052. CrossRef
5.
Zurück zum Zitat Etich J, et al. Signaling pathways affected by mutations causing osteogenesis imperfecta. Cell Signal. 2020;76:109789. CrossRef Etich J, et al. Signaling pathways affected by mutations causing osteogenesis imperfecta. Cell Signal. 2020;76:109789. CrossRef
6.
Zurück zum Zitat Hoyer-Kuhn H, Netzer C, Semler O. Osteogenesis imperfecta: pathophysiology and treatment. Wien Med Wochenschr. 2015;165(13–14):278–84. CrossRef Hoyer-Kuhn H, Netzer C, Semler O. Osteogenesis imperfecta: pathophysiology and treatment. Wien Med Wochenschr. 2015;165(13–14):278–84. CrossRef
7.
Zurück zum Zitat Etich J, et al. Osteogenesis imperfecta-pathophysiology and therapeutic options. Mol Cell Pediatr. 2020;7(1):9. CrossRef Etich J, et al. Osteogenesis imperfecta-pathophysiology and therapeutic options. Mol Cell Pediatr. 2020;7(1):9. CrossRef
8.
Zurück zum Zitat Wagermaier W, Klaushofer K, Fratzl P. Fragility of bone material controlled by internal interfaces. Calcif Tissue Int. 2015;97(3):201–12. CrossRef Wagermaier W, Klaushofer K, Fratzl P. Fragility of bone material controlled by internal interfaces. Calcif Tissue Int. 2015;97(3):201–12. CrossRef
9.
Zurück zum Zitat Rauch F. Watching bone cells at work: what we can see from bone biopsies. Pediatr Nephrol. 2006;21(4):457–62. CrossRef Rauch F. Watching bone cells at work: what we can see from bone biopsies. Pediatr Nephrol. 2006;21(4):457–62. CrossRef
10.
Zurück zum Zitat Misof BM, et al. Knochengewebe und -material in gesunden Menschen und bei Krankheit. J Miner Stoffwechs Muskuloskelet Erkrank. 2020;27:98–101. CrossRef Misof BM, et al. Knochengewebe und -material in gesunden Menschen und bei Krankheit. J Miner Stoffwechs Muskuloskelet Erkrank. 2020;27:98–101. CrossRef
11.
Zurück zum Zitat Parfitt AM, et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR histomorphometry nomenclature committee. J Bone Miner Res. 1987;2(6):595–610. CrossRef Parfitt AM, et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR histomorphometry nomenclature committee. J Bone Miner Res. 1987;2(6):595–610. CrossRef
12.
Zurück zum Zitat Rauch F, Glorieux FH. Osteogenesis imperfecta. Lancet. 2004;363(9418):1377–85. CrossRef Rauch F, Glorieux FH. Osteogenesis imperfecta. Lancet. 2004;363(9418):1377–85. CrossRef
13.
Zurück zum Zitat Roschger P, et al. Bone mineralization density distribution in health and disease. Bone. 2008;42(3):456–66. CrossRef Roschger P, et al. Bone mineralization density distribution in health and disease. Bone. 2008;42(3):456–66. CrossRef
14.
Zurück zum Zitat Fratzl-Zelman N, et al. Bone mass and mineralization in osteogenesis imperfecta. Wien Med Wochenschr. 2015;165(13–14):271–7. CrossRef Fratzl-Zelman N, et al. Bone mass and mineralization in osteogenesis imperfecta. Wien Med Wochenschr. 2015;165(13–14):271–7. CrossRef
15.
Zurück zum Zitat Fratzl-Zelman N, et al. Normative data on mineralization density distribution in iliac bone biopsies of children, adolescents and young adults. Bone. 2009;44(6):1043–8. CrossRef Fratzl-Zelman N, et al. Normative data on mineralization density distribution in iliac bone biopsies of children, adolescents and young adults. Bone. 2009;44(6):1043–8. CrossRef
16.
Zurück zum Zitat Boyde A, et al. The mineralization density of iliac crest bone from children with osteogenesis imperfecta. Calcif Tissue Int. 1999;64(3):185–90. CrossRef Boyde A, et al. The mineralization density of iliac crest bone from children with osteogenesis imperfecta. Calcif Tissue Int. 1999;64(3):185–90. CrossRef
17.
Zurück zum Zitat Roschger P, et al. Evidence that abnormal high bone mineralization in growing children with osteogenesis imperfecta is not associated with specific collagen mutations. Calcif Tissue Int. 2008;82(4):263–70. CrossRef Roschger P, et al. Evidence that abnormal high bone mineralization in growing children with osteogenesis imperfecta is not associated with specific collagen mutations. Calcif Tissue Int. 2008;82(4):263–70. CrossRef
18.
Zurück zum Zitat Morello R, et al. CRTAP is required for prolyl 3‑hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell. 2006;127(2):291–304. CrossRef Morello R, et al. CRTAP is required for prolyl 3‑hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell. 2006;127(2):291–304. CrossRef
19.
Zurück zum Zitat Cabral WA, et al. Prolyl 3‑hydroxylase 1 deficiency causes a recessive metabolic bone disorder resembling lethal/severe osteogenesis imperfecta. Nat Genet. 2007;39(3):359–65. CrossRef Cabral WA, et al. Prolyl 3‑hydroxylase 1 deficiency causes a recessive metabolic bone disorder resembling lethal/severe osteogenesis imperfecta. Nat Genet. 2007;39(3):359–65. CrossRef
20.
Zurück zum Zitat Bishop N. Bone material properties in osteogenesis imperfecta. J Bone Miner Res. 2016;31(4):699–708. CrossRef Bishop N. Bone material properties in osteogenesis imperfecta. J Bone Miner Res. 2016;31(4):699–708. CrossRef
21.
Zurück zum Zitat Farber CR, et al. A novel IFITM5 mutation in severe atypical osteogenesis imperfecta type VI impairs osteoblast production of pigment epithelium-derived factor. J Bone Miner Res. 2014;29(6):1402–11. CrossRef Farber CR, et al. A novel IFITM5 mutation in severe atypical osteogenesis imperfecta type VI impairs osteoblast production of pigment epithelium-derived factor. J Bone Miner Res. 2014;29(6):1402–11. CrossRef
22.
Zurück zum Zitat Cheung MS, Glorieux FH, Rauch F. Natural history of hyperplastic callus formation in osteogenesis imperfecta type V. J Bone Miner Res. 2007;22(8):1181–6. CrossRef Cheung MS, Glorieux FH, Rauch F. Natural history of hyperplastic callus formation in osteogenesis imperfecta type V. J Bone Miner Res. 2007;22(8):1181–6. CrossRef
23.
Zurück zum Zitat Blouin S, et al. Hypermineralization and high osteocyte lacunar density in osteogenesis Imperfecta type V bone indicate exuberant primary bone formation. J Bone Miner Res. 2017;32(9):1884–92. CrossRef Blouin S, et al. Hypermineralization and high osteocyte lacunar density in osteogenesis Imperfecta type V bone indicate exuberant primary bone formation. J Bone Miner Res. 2017;32(9):1884–92. CrossRef
24.
Zurück zum Zitat Hedjazi G, et al. Bone tissue in murine atypical type VI osteogenesis imperfecta has changes in vascular pores and matrix organization, plus classic OI hypermineralization. European Calcified Tissue Congress 2020; Marseille, France. 2020. digital conference. Hedjazi G, et al. Bone tissue in murine atypical type VI osteogenesis imperfecta has changes in vascular pores and matrix organization, plus classic OI hypermineralization. European Calcified Tissue Congress 2020; Marseille, France. 2020. digital conference.
25.
Zurück zum Zitat Granke M, Does MD, Nyman JS. The role of water compartments in the material properties of cortical bone. Calcif Tissue Int. 2015;97(3):292–307. CrossRef Granke M, Does MD, Nyman JS. The role of water compartments in the material properties of cortical bone. Calcif Tissue Int. 2015;97(3):292–307. CrossRef
26.
Zurück zum Zitat Fratzl-Zelman N, et al. Mineral particle size in children with osteogenesis imperfecta type I is not increased independently of specific collagen mutations. Bone. 2014;60:122–8. CrossRef Fratzl-Zelman N, et al. Mineral particle size in children with osteogenesis imperfecta type I is not increased independently of specific collagen mutations. Bone. 2014;60:122–8. CrossRef
27.
Zurück zum Zitat Fratzl-Zelman N, et al. Unique micro- and nano-scale mineralization pattern of human osteogenesis imperfecta type VI bone. Bone. 2015;73:233–41. CrossRef Fratzl-Zelman N, et al. Unique micro- and nano-scale mineralization pattern of human osteogenesis imperfecta type VI bone. Bone. 2015;73:233–41. CrossRef
28.
Zurück zum Zitat Paschalis EP, Gamsjaeger S, Klaushofer K. Vibrational spectroscopic techniques to assess bone quality. Osteoporos Int. 2017;28(8):2275–91. CrossRef Paschalis EP, Gamsjaeger S, Klaushofer K. Vibrational spectroscopic techniques to assess bone quality. Osteoporos Int. 2017;28(8):2275–91. CrossRef
29.
Zurück zum Zitat Rinnerthaler S, et al. Scanning small angle X‑ray scattering analysis of human bone sections. Calcif Tissue Int. 1999;64(5):422–9. CrossRef Rinnerthaler S, et al. Scanning small angle X‑ray scattering analysis of human bone sections. Calcif Tissue Int. 1999;64(5):422–9. CrossRef
30.
Zurück zum Zitat Weber M, et al. Pamidronate does not adversely affect bone intrinsic material properties in children with osteogenesis imperfecta. Bone. 2006;39(3):616–22. CrossRef Weber M, et al. Pamidronate does not adversely affect bone intrinsic material properties in children with osteogenesis imperfecta. Bone. 2006;39(3):616–22. CrossRef
31.
Zurück zum Zitat Fratzl-Zelman N, et al. CRTAP deficiency leads to abnormally high bone matrix mineralization in a murine model and in children with osteogenesis imperfecta type VII. Bone. 2010;46(3):820–6. CrossRef Fratzl-Zelman N, et al. CRTAP deficiency leads to abnormally high bone matrix mineralization in a murine model and in children with osteogenesis imperfecta type VII. Bone. 2010;46(3):820–6. CrossRef
32.
Zurück zum Zitat Fratzl-Zelman N, et al. Non-lethal type VIII osteogenesis Imperfecta has elevated bone matrix mineralization. J Clin Endocrinol Metab. 2016;101(9):3516–25. CrossRef Fratzl-Zelman N, et al. Non-lethal type VIII osteogenesis Imperfecta has elevated bone matrix mineralization. J Clin Endocrinol Metab. 2016;101(9):3516–25. CrossRef
33.
Zurück zum Zitat Paschalis EP, et al. Evidence for a role for nanoporosity and pyridinoline content in human mild osteogenesis imperfecta. J Bone Miner Res. 2016;31(5):1050–9. CrossRef Paschalis EP, et al. Evidence for a role for nanoporosity and pyridinoline content in human mild osteogenesis imperfecta. J Bone Miner Res. 2016;31(5):1050–9. CrossRef
Metadaten
Titel
Bone properties in osteogenesis imperfecta: what can we learn from a bone biopsy beyond histology?
verfasst von
Matthias Mähr
Dr. Stéphane Blouin
Dr. Barbara M. Misof
Dr. Eleftherios P. Paschalis
PD Dr. Markus A. Hartmann
Prim. PD Dr. Jochen Zwerina
PD Dr. Nadja Fratzl-Zelman
Publikationsdatum
22.02.2021
Verlag
Springer Vienna
Erschienen in
Wiener Medizinische Wochenschrift / Ausgabe 5-6/2021
Print ISSN: 0043-5341
Elektronische ISSN: 1563-258X
DOI
https://doi.org/10.1007/s10354-021-00818-w