Skip to main content
Erschienen in: hautnah 2/2018

16.04.2018 | Ästhetische Dermatologie

Anti-Aging-Strategien

Innovative Konzepte für die Entwicklung von Anti-Aging-Dermokosmetika

verfasst von: Prof. Dr. Cornelia M. Keck

Erschienen in: hautnah | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Zusammenfassung

Effektive Anti-Aging-Wirkstoffe können nur dann entwickeltwerden, wenn der Alterungsprozess vollständig verstanden ist. Da dies bis heute noch nicht vollständig der Fall ist, sind derzeit nur solche Wirkstoffe verfügbar, die in bereits verstandene Teilbereiche des Alterungsprozesses eingreifen können. Der Beitrag umreißt die wesentlichen heute bekannten Anti-Aging-Strategien und erläutert, basierend darauf, neue und innovative Konzepte für die Entwicklung von Anti-Aging-Dermokosmetika.
Literatur
1.
Zurück zum Zitat Köckritz A (2001) Flüsse aus Quecksilber. Zeit 11(26):3 Köckritz A (2001) Flüsse aus Quecksilber. Zeit 11(26):3
3.
Zurück zum Zitat Hasworth SB, Cannon ML (2015) Social theories of aging: a review. Dis Mon 61(11):475–479PubMedCrossRef Hasworth SB, Cannon ML (2015) Social theories of aging: a review. Dis Mon 61(11):475–479PubMedCrossRef
4.
Zurück zum Zitat Avantaggiato A et al (2015) The theories of aging: reactive oxygen species and what else? J Biol Regul Homeost Agents 29(3Suppl 1):156–163PubMed Avantaggiato A et al (2015) The theories of aging: reactive oxygen species and what else? J Biol Regul Homeost Agents 29(3Suppl 1):156–163PubMed
6.
Zurück zum Zitat Libertini G (2015) Non-programmed versus programmed aging paradigm. Curr Aging Sci 8(1):56–68PubMedCrossRef Libertini G (2015) Non-programmed versus programmed aging paradigm. Curr Aging Sci 8(1):56–68PubMedCrossRef
7.
Zurück zum Zitat Goldsmith TC (2015) Is the evolutionary programmed/non-programmed aging argument moot? Curr Aging Sci 8(1):41–45PubMedCrossRef Goldsmith TC (2015) Is the evolutionary programmed/non-programmed aging argument moot? Curr Aging Sci 8(1):41–45PubMedCrossRef
8.
Zurück zum Zitat Aledo JC, Blanco JM (2015) Agingisneitherafailure nor an achievement of natural selection. Curr Aging Sci 8(1):4–10PubMedCrossRef Aledo JC, Blanco JM (2015) Agingisneitherafailure nor an achievement of natural selection. Curr Aging Sci 8(1):4–10PubMedCrossRef
9.
Zurück zum Zitat Cohen AA (2016) Complex systems dynamics in aging: new evidence, continuing questions. Biogerontology 17(1):205–220PubMedCrossRef Cohen AA (2016) Complex systems dynamics in aging: new evidence, continuing questions. Biogerontology 17(1):205–220PubMedCrossRef
10.
11.
Zurück zum Zitat Piotrowska A, Bartnik E (2014) The role of reactive oxygen species and mitochondria in aging. Postepy Biochem 60(2):240–247PubMed Piotrowska A, Bartnik E (2014) The role of reactive oxygen species and mitochondria in aging. Postepy Biochem 60(2):240–247PubMed
12.
Zurück zum Zitat Sikora E (2014) Aging and longevity. Postepy Biochem 60(2):125–137PubMed Sikora E (2014) Aging and longevity. Postepy Biochem 60(2):125–137PubMed
13.
Zurück zum Zitat Liochev SI (2015) Reflections on the theories of aging, of oxidative stress, and of science in general. Is it time to abandon the free radical (oxidative stress) theory of aging? Antioxid Redox Signal 23(3):187–207PubMedCrossRef Liochev SI (2015) Reflections on the theories of aging, of oxidative stress, and of science in general. Is it time to abandon the free radical (oxidative stress) theory of aging? Antioxid Redox Signal 23(3):187–207PubMedCrossRef
14.
Zurück zum Zitat Fulop T et al (2014) On the immunological theory of aging. Interdiscip Top Gerontol 39:163–176PubMedCrossRef Fulop T et al (2014) On the immunological theory of aging. Interdiscip Top Gerontol 39:163–176PubMedCrossRef
15.
Zurück zum Zitat Zs-Nagy I (2014) Aging of cell membranes: facts and theories. Interdiscip Top Gerontol 39:62–85PubMedCrossRef Zs-Nagy I (2014) Aging of cell membranes: facts and theories. Interdiscip Top Gerontol 39:62–85PubMedCrossRef
16.
Zurück zum Zitat Le Bourg E (2014) Evolutionary theories of aging can explain why we age. Interdiscip Top Gerontol 39:8–23PubMedCrossRef Le Bourg E (2014) Evolutionary theories of aging can explain why we age. Interdiscip Top Gerontol 39:8–23PubMedCrossRef
19.
Zurück zum Zitat Hardeland R (2013) Melatonin and the theories of aging: a critical appraisal of melatonin’s role in antiaging mechanisms. J Pineal Res 55(4):325–356PubMed Hardeland R (2013) Melatonin and the theories of aging: a critical appraisal of melatonin’s role in antiaging mechanisms. J Pineal Res 55(4):325–356PubMed
20.
21.
Zurück zum Zitat Xi H et al (2013) Telomere, aging and age-related diseases. Aging Clin Exp Res 25(2):139–146PubMedCrossRef Xi H et al (2013) Telomere, aging and age-related diseases. Aging Clin Exp Res 25(2):139–146PubMedCrossRef
23.
Zurück zum Zitat Naito AT, Komuro I (2013) Chronic inflammation andorganismal aging. Clin Calcium 23(1):51–58PubMed Naito AT, Komuro I (2013) Chronic inflammation andorganismal aging. Clin Calcium 23(1):51–58PubMed
24.
25.
Zurück zum Zitat Jenny NS (2012) Inflammation in aging: cause, effect, or both? Discov Med 13(73):451–460PubMed Jenny NS (2012) Inflammation in aging: cause, effect, or both? Discov Med 13(73):451–460PubMed
26.
27.
Zurück zum Zitat Weinert BT, Timiras PS (1985) Invited review: theories of aging. J Appl Physiol 95(4):1706–1716CrossRef Weinert BT, Timiras PS (1985) Invited review: theories of aging. J Appl Physiol 95(4):1706–1716CrossRef
28.
Zurück zum Zitat Medvedev ZA (1990) An attempt at a rational classification of theories of ageing. Biol Rev Camb Philos Soc 65(3):375–398PubMedCrossRef Medvedev ZA (1990) An attempt at a rational classification of theories of ageing. Biol Rev Camb Philos Soc 65(3):375–398PubMedCrossRef
29.
Zurück zum Zitat Huber J, Buchacher R (2007) Das Ende des Alterns: Bahnbrechende medizinische Möglichkeiten der Verjüngung. Ullstein, Berlin Huber J, Buchacher R (2007) Das Ende des Alterns: Bahnbrechende medizinische Möglichkeiten der Verjüngung. Ullstein, Berlin
30.
Zurück zum Zitat Stipp D (2010) The youth pill: scientists at the brink of an anti-aging revolution. Penguin Group, Current Stipp D (2010) The youth pill: scientists at the brink of an anti-aging revolution. Penguin Group, Current
32.
Zurück zum Zitat Busse EW (1969) Onemedical school’s approach to teaching problems of the aging. J Am Geriatr Soc 17(3):299–314PubMedCrossRef Busse EW (1969) Onemedical school’s approach to teaching problems of the aging. J Am Geriatr Soc 17(3):299–314PubMedCrossRef
33.
Zurück zum Zitat Anstey K, Stankov L, Lord S (1993) Primary aging, secondary aging, and intelligence. Psychol Aging 8(4):562–570PubMedCrossRef Anstey K, Stankov L, Lord S (1993) Primary aging, secondary aging, and intelligence. Psychol Aging 8(4):562–570PubMedCrossRef
34.
Zurück zum Zitat Robinson LJ et al (2003) Proteomic analysis of the genetic premature aging disease Hutchinson Gilford progeria syndrome reveals differential protein expression and glycosylation. J Proteome Res 2(5):556–557PubMedCrossRef Robinson LJ et al (2003) Proteomic analysis of the genetic premature aging disease Hutchinson Gilford progeria syndrome reveals differential protein expression and glycosylation. J Proteome Res 2(5):556–557PubMedCrossRef
35.
Zurück zum Zitat Brown WT (1992) Progeria: a human-disease model of accelerated aging. Am J Clin Nutr 55(6 Suppl):S1222–S1224CrossRef Brown WT (1992) Progeria: a human-disease model of accelerated aging. Am J Clin Nutr 55(6 Suppl):S1222–S1224CrossRef
36.
Zurück zum Zitat Brown WT, Zebrower M, Kieras FJ (1985) Progeria, a model disease for the study of accelerate daging. Basic Life Sci 35:375–396PubMed Brown WT, Zebrower M, Kieras FJ (1985) Progeria, a model disease for the study of accelerate daging. Basic Life Sci 35:375–396PubMed
37.
Zurück zum Zitat Blancquaert A (1959) Progeria & progeria-like disease. Maandschr Kindergeneeskd 27(5):157–171PubMed Blancquaert A (1959) Progeria & progeria-like disease. Maandschr Kindergeneeskd 27(5):157–171PubMed
38.
Zurück zum Zitat Paglia DE, Walford RL (2005) Atypical hematological response to combined calorie restriction and chronic hypoxia in biosphere 2 crew: a possible link to latent features of hibernation capacity. Habitation (Elmsford) 10(2):79–85CrossRef Paglia DE, Walford RL (2005) Atypical hematological response to combined calorie restriction and chronic hypoxia in biosphere 2 crew: a possible link to latent features of hibernation capacity. Habitation (Elmsford) 10(2):79–85CrossRef
39.
Zurück zum Zitat Walford RL et al (2002) Calorie restriction in biosphere 2: alterations in physiologic, hematologic, hormonal, andbiochemicalparameters inhumans restricted for a 2-year period. J Gerontol A Biol Sci Med Sci 57(6):B211–B224PubMedCrossRef Walford RL et al (2002) Calorie restriction in biosphere 2: alterations in physiologic, hematologic, hormonal, andbiochemicalparameters inhumans restricted for a 2-year period. J Gerontol A Biol Sci Med Sci 57(6):B211–B224PubMedCrossRef
40.
Zurück zum Zitat Walford RL et al (1999) Physiologic changes in humans subjected to severe, selective calorie restriction for two years in biosphere 2: health, aging, and toxicological perspectives. Toxicol Sci 52(2Suppl):61–65PubMed Walford RL et al (1999) Physiologic changes in humans subjected to severe, selective calorie restriction for two years in biosphere 2: health, aging, and toxicological perspectives. Toxicol Sci 52(2Suppl):61–65PubMed
41.
Zurück zum Zitat Al-Regaiey KA (2016) The effects of calorie restriction on aging: a brief review. Eur Rev Med Pharmacol Sci 20(11):2468–2473PubMed Al-Regaiey KA (2016) The effects of calorie restriction on aging: a brief review. Eur Rev Med Pharmacol Sci 20(11):2468–2473PubMed
42.
43.
Zurück zum Zitat Salvatore MF et al (2016) Initiation of calorie restriction in middle-aged male rats attenuates aging-related motoric decline and bradykinesia without increased striatal dopamine. Neurobiol Aging 37:192–207PubMedCrossRef Salvatore MF et al (2016) Initiation of calorie restriction in middle-aged male rats attenuates aging-related motoric decline and bradykinesia without increased striatal dopamine. Neurobiol Aging 37:192–207PubMedCrossRef
44.
Zurück zum Zitat Trubitsyn AG (2015) The lag of the proliferative aging clock underlies thelifespan-extending effect of calorie restriction. Curr Aging Sci 8(3):220–226PubMedCrossRef Trubitsyn AG (2015) The lag of the proliferative aging clock underlies thelifespan-extending effect of calorie restriction. Curr Aging Sci 8(3):220–226PubMedCrossRef
45.
Zurück zum Zitat Karunadharma PP et al (2015) Subacute calorie restriction and rapamycin discordantly alter mouse liver proteome homeostasis and reverse aging effects. Aging Cell 14(4):547–557PubMedPubMedCentralCrossRef Karunadharma PP et al (2015) Subacute calorie restriction and rapamycin discordantly alter mouse liver proteome homeostasis and reverse aging effects. Aging Cell 14(4):547–557PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Xu C et al (2015) Calorie restriction prevents metabolic aging caused by abnormal SIRT1 function in adipose tissues. Diabetes 64(5):1576–1590PubMedCrossRef Xu C et al (2015) Calorie restriction prevents metabolic aging caused by abnormal SIRT1 function in adipose tissues. Diabetes 64(5):1576–1590PubMedCrossRef
47.
Zurück zum Zitat Kim DH et al (2015) The roles of FoxOs in modulation of aging by calorie restriction. Biogerontology 16(1):1–14PubMedCrossRef Kim DH et al (2015) The roles of FoxOs in modulation of aging by calorie restriction. Biogerontology 16(1):1–14PubMedCrossRef
48.
Zurück zum Zitat Kim DH et al (2014) The essential role of FoxO6 phosphorylation in aging and calorie restriction. Age (Dordr) 36(4):9679CrossRef Kim DH et al (2014) The essential role of FoxO6 phosphorylation in aging and calorie restriction. Age (Dordr) 36(4):9679CrossRef
49.
Zurück zum Zitat Michan S (2014) Calorie restriction and NAD(+)/sirtuin counteract the hallmarks of aging. Front Biosci 19:1300–1319CrossRef Michan S (2014) Calorie restriction and NAD(+)/sirtuin counteract the hallmarks of aging. Front Biosci 19:1300–1319CrossRef
50.
Zurück zum Zitat Testa G et al (2014) Calorie restriction and dietary restriction mimetics: a strategy for improving healthy aging and longevity. Curr Pharm Des 20(18):2950–2977PubMedCrossRef Testa G et al (2014) Calorie restriction and dietary restriction mimetics: a strategy for improving healthy aging and longevity. Curr Pharm Des 20(18):2950–2977PubMedCrossRef
51.
Zurück zum Zitat Yamada Y et al (2013) Long-term calorie restriction decreases metabolic cost of movement and prevents decrease of physical activity during aging in rhesus monkeys. Exp Gerontol 48(11):1226–1235PubMedCrossRef Yamada Y et al (2013) Long-term calorie restriction decreases metabolic cost of movement and prevents decrease of physical activity during aging in rhesus monkeys. Exp Gerontol 48(11):1226–1235PubMedCrossRef
53.
Zurück zum Zitat Chung KW et al (2013) Recent advances in calorie restriction research on aging. Exp Gerontol 48(10):1049–1053PubMedCrossRef Chung KW et al (2013) Recent advances in calorie restriction research on aging. Exp Gerontol 48(10):1049–1053PubMedCrossRef
54.
Zurück zum Zitat Drewnowski A et al (1996) Diet quality and dietary diversity in France: implications for the French paradox. J Am Diet Assoc 96(7):663–669PubMedCrossRef Drewnowski A et al (1996) Diet quality and dietary diversity in France: implications for the French paradox. J Am Diet Assoc 96(7):663–669PubMedCrossRef
56.
Zurück zum Zitat Renaud S, de Lorgeril M (1993) The French paradox: dietary factors and cigarette smoking-related health risks. Ann N Y Acad Sci 686:299–309PubMedCrossRef Renaud S, de Lorgeril M (1993) The French paradox: dietary factors and cigarette smoking-related health risks. Ann N Y Acad Sci 686:299–309PubMedCrossRef
57.
Zurück zum Zitat Renaud S, de Lorgeril M (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339(8808):1523–1526PubMedCrossRef Renaud S, de Lorgeril M (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339(8808):1523–1526PubMedCrossRef
58.
Zurück zum Zitat Richard JL (1987) Coronary risk factors. The French paradox. Arch Mal Coeur Vaiss 80(SpecNo):17–21PubMed Richard JL (1987) Coronary risk factors. The French paradox. Arch Mal Coeur Vaiss 80(SpecNo):17–21PubMed
59.
Zurück zum Zitat Yang X, Li X, Ren J (2014) From French paradox to cancer treatment: anti-cancer activities and mechanisms of resveratrol. Anticancer Agents Med Chem 14(6):806–825PubMedCrossRef Yang X, Li X, Ren J (2014) From French paradox to cancer treatment: anti-cancer activities and mechanisms of resveratrol. Anticancer Agents Med Chem 14(6):806–825PubMedCrossRef
60.
Zurück zum Zitat Goldfinger TM (2003) Beyond the French paradox: the impact of moderate beverage alcohol and wine consumption in the prevention of cardiovascular disease. Cardiol Clin 21(3):449–457PubMedCrossRef Goldfinger TM (2003) Beyond the French paradox: the impact of moderate beverage alcohol and wine consumption in the prevention of cardiovascular disease. Cardiol Clin 21(3):449–457PubMedCrossRef
61.
Zurück zum Zitat Yarnell JW, Evans AE (2000) The Mediterranean diet revisited – towards resolving the (French) paradox. QJM 93(12):783–785PubMedCrossRef Yarnell JW, Evans AE (2000) The Mediterranean diet revisited – towards resolving the (French) paradox. QJM 93(12):783–785PubMedCrossRef
62.
Zurück zum Zitat Renaud S, Gueguen R (1998) The French paradox and wine drinking. Novartis Found Symp 216:208–217 (discussion217–22,152–8)PubMed Renaud S, Gueguen R (1998) The French paradox and wine drinking. Novartis Found Symp 216:208–217 (discussion217–22,152–8)PubMed
63.
Zurück zum Zitat Kapoor VK, Dureja J, Chadha R (2009) Synthetic drugs with anti-ageing effects. Drug Discov Today 14(17–18):899–904PubMedCrossRef Kapoor VK, Dureja J, Chadha R (2009) Synthetic drugs with anti-ageing effects. Drug Discov Today 14(17–18):899–904PubMedCrossRef
64.
Zurück zum Zitat Harman D (1982) Nutritional implications of the free-radical theory of aging. J Am Coll Nutr 1(1):27–34PubMedCrossRef Harman D (1982) Nutritional implications of the free-radical theory of aging. J Am Coll Nutr 1(1):27–34PubMedCrossRef
68.
Zurück zum Zitat Harman D (1992) Free radical theory of aging: history. EXS 62:1–10PubMed Harman D (1992) Free radical theory of aging: history. EXS 62:1–10PubMed
69.
Zurück zum Zitat Harman D (1993) Freeradical involvementinaging. Pathophysiology and therapeutic implications. Drugs Aging 3(1):60–80PubMedCrossRef Harman D (1993) Freeradical involvementinaging. Pathophysiology and therapeutic implications. Drugs Aging 3(1):60–80PubMedCrossRef
70.
Zurück zum Zitat Harman D (1994) Free-radical theory of aging. Increasing the functional life span. Ann N Y Acad Sci 717:1–15PubMedCrossRef Harman D (1994) Free-radical theory of aging. Increasing the functional life span. Ann N Y Acad Sci 717:1–15PubMedCrossRef
72.
Zurück zum Zitat Harman D (1998) Aging and oxidative stress. J Int Fed Clin Chem 10(1):24–27PubMed Harman D (1998) Aging and oxidative stress. J Int Fed Clin Chem 10(1):24–27PubMed
73.
74.
Zurück zum Zitat Harman D (2000) Antioxidant supplements: effects on disease and aging in the United States population. J Am Aging Assoc 23(1):25–31PubMedPubMedCentral Harman D (2000) Antioxidant supplements: effects on disease and aging in the United States population. J Am Aging Assoc 23(1):25–31PubMedPubMedCentral
76.
77.
Zurück zum Zitat Harman D (2006) Free radical theory of aging: an update: increasing the functional lifespan. Ann N Y Acad Sci 1067:10–21PubMedCrossRef Harman D (2006) Free radical theory of aging: an update: increasing the functional lifespan. Ann N Y Acad Sci 1067:10–21PubMedCrossRef
78.
Zurück zum Zitat Harman D (2009) About „Origin and evolution of the free radical theory of aging: a brief personal history, 1954–2009“. Biogerontology 10(6):783PubMedCrossRef Harman D (2009) About „Origin and evolution of the free radical theory of aging: a brief personal history, 1954–2009“. Biogerontology 10(6):783PubMedCrossRef
79.
Zurück zum Zitat Lichtenstein AH, Russell RM (2005) Essential nutrients: food or supplements? Where should the emphasis be? JAMA 294(3):351–358PubMedCrossRef Lichtenstein AH, Russell RM (2005) Essential nutrients: food or supplements? Where should the emphasis be? JAMA 294(3):351–358PubMedCrossRef
80.
Zurück zum Zitat Murphy SP et al (2007) Multivitamin-multimineral supplements’ effect on total nutrient intake. Am J Clin Nutr 85(1):280–284 Murphy SP et al (2007) Multivitamin-multimineral supplements’ effect on total nutrient intake. Am J Clin Nutr 85(1):280–284
81.
Zurück zum Zitat Penniston KL, Tanumihardjo SA (2003) Vitamin A in dietary supplements and fortified foods: too much of a good thing? J Am Diet Assoc 103(9):1185–1187PubMedCrossRef Penniston KL, Tanumihardjo SA (2003) Vitamin A in dietary supplements and fortified foods: too much of a good thing? J Am Diet Assoc 103(9):1185–1187PubMedCrossRef
82.
Zurück zum Zitat Tomada I, Andrade JP (2015) Science based antiageing nutritional recommendations (Chapter 11). In: Neves D (Hrsg) Anti-ageing nutrients: evidence based prevention of age-associated diseases. Wiley, Hoboken, S 365–390 Tomada I, Andrade JP (2015) Science based antiageing nutritional recommendations (Chapter 11). In: Neves D (Hrsg) Anti-ageing nutrients: evidence based prevention of age-associated diseases. Wiley, Hoboken, S 365–390
83.
Zurück zum Zitat Diamanti-Kandarakis E et al (2017) Mechanisms in endocrinology: aging and anti-aging: a combo-endocrinology overview. Eur J Endocrinol 176(6):R283–R308PubMedCrossRef Diamanti-Kandarakis E et al (2017) Mechanisms in endocrinology: aging and anti-aging: a combo-endocrinology overview. Eur J Endocrinol 176(6):R283–R308PubMedCrossRef
84.
Zurück zum Zitat Morley JE (2013) Scientific overview of hormone treatment used for rejuvenation. Fertil Steril 99(7):1807–1813PubMedCrossRef Morley JE (2013) Scientific overview of hormone treatment used for rejuvenation. Fertil Steril 99(7):1807–1813PubMedCrossRef
85.
Zurück zum Zitat Zdanys KF, Steffens DC (2015) Sleep disturbances in the elderly. Psychiatr Clin North Am 38(4):723–741PubMedCrossRef Zdanys KF, Steffens DC (2015) Sleep disturbances in the elderly. Psychiatr Clin North Am 38(4):723–741PubMedCrossRef
87.
Zurück zum Zitat Manchester LC et al (2015) Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res 59(4):403–419PubMedCrossRef Manchester LC et al (2015) Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res 59(4):403–419PubMedCrossRef
88.
Zurück zum Zitat Ramis MR et al (2015) Protective effects of melatonin and mitochondria-targeted antioxidants against oxidative stress: a review. Curr Med Chem 22(22):2690–2711PubMedCrossRef Ramis MR et al (2015) Protective effects of melatonin and mitochondria-targeted antioxidants against oxidative stress: a review. Curr Med Chem 22(22):2690–2711PubMedCrossRef
89.
Zurück zum Zitat Ramis MR et al (2015) Caloric restriction, resveratrol and melatonin: role of SIRT1 and implications for aging and related-diseases. Mech Ageing Dev 146–148:28–41PubMedCrossRef Ramis MR et al (2015) Caloric restriction, resveratrol and melatonin: role of SIRT1 and implications for aging and related-diseases. Mech Ageing Dev 146–148:28–41PubMedCrossRef
90.
Zurück zum Zitat Karaaslan C, Suzen S (2015) Antioxidant properties of melatonin and its potential action in diseases. Curr Top Med Chem 15(9):894–903PubMedCrossRef Karaaslan C, Suzen S (2015) Antioxidant properties of melatonin and its potential action in diseases. Curr Top Med Chem 15(9):894–903PubMedCrossRef
91.
Zurück zum Zitat Jenwitheesuk A et al (2014) Melatonin regulates aging and neurodegeneration through energy metabolism, epigenetics, autophagy and circadian rhythm pathways. Int J Mol Sci 15(9):16848–16884PubMedPubMedCentralCrossRef Jenwitheesuk A et al (2014) Melatonin regulates aging and neurodegeneration through energy metabolism, epigenetics, autophagy and circadian rhythm pathways. Int J Mol Sci 15(9):16848–16884PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Reiter RJ et al (2002) Melatonin, longevity and health in the aged: an assessment. Free Radic Res 36(12):1323–1329PubMedCrossRef Reiter RJ et al (2002) Melatonin, longevity and health in the aged: an assessment. Free Radic Res 36(12):1323–1329PubMedCrossRef
95.
Zurück zum Zitat Tanaka Y et al (1999) Effect of metformin on advanced glycation endproduct formation and peripheral nerve function in streptozotocin-induced diabetic rats. Eur J Pharmacol 376(1–2):17–22PubMedCrossRef Tanaka Y et al (1999) Effect of metformin on advanced glycation endproduct formation and peripheral nerve function in streptozotocin-induced diabetic rats. Eur J Pharmacol 376(1–2):17–22PubMedCrossRef
96.
Zurück zum Zitat Ouslimani N et al (2007) Metformin reduces endothelial cell expression ofboth the receptor for advanced glycation end products and lectin-like oxidizedreceptor 1. Metabolism 56(3):308–313PubMedCrossRef Ouslimani N et al (2007) Metformin reduces endothelial cell expression ofboth the receptor for advanced glycation end products and lectin-like oxidizedreceptor 1. Metabolism 56(3):308–313PubMedCrossRef
97.
Zurück zum Zitat Beisswenger P, Ruggiero-Lopez D (2003) Metformin inhibition of glycation processes. Diabetes Metab 29(4Pt2):6S95–6103PubMed Beisswenger P, Ruggiero-Lopez D (2003) Metformin inhibition of glycation processes. Diabetes Metab 29(4Pt2):6S95–6103PubMed
98.
Zurück zum Zitat Ishibashi Y et al (2013) Metformin inhibits advanced glycation end products (AGEs)-induced growth and VEGF expression in MCF-7 breast cancer cells by suppressing AGEs receptor expression via AMP-activated protein kinase. Horm Metab Res 45(5):387–390PubMed Ishibashi Y et al (2013) Metformin inhibits advanced glycation end products (AGEs)-induced growth and VEGF expression in MCF-7 breast cancer cells by suppressing AGEs receptor expression via AMP-activated protein kinase. Horm Metab Res 45(5):387–390PubMed
99.
Zurück zum Zitat Carmona JJ, Michan S (2016) Biology of healthy aging and longevity. Rev Invest Clin 68(1):7–16PubMed Carmona JJ, Michan S (2016) Biology of healthy aging and longevity. Rev Invest Clin 68(1):7–16PubMed
102.
103.
Zurück zum Zitat Ramos-e-Silva M et al (2013) Anti-aging cosmetics: facts and controversies. Clin Dermatol 31(6):750–758PubMedCrossRef Ramos-e-Silva M et al (2013) Anti-aging cosmetics: facts and controversies. Clin Dermatol 31(6):750–758PubMedCrossRef
104.
Zurück zum Zitat Trommer H, Böttcher R, Neubert RHH (2002) Ascorbinsäure – Ein Vitamin wie Dr. Jekyll und Mr. Hyde. PZ-Pharmazeutische Zeitung – online, 2002. 48. http://www.pharmazeutische-zeitung. de/index.php?id=24758. Zugegriffen: 25. Juli 2017 Trommer H, Böttcher R, Neubert RHH (2002) Ascorbinsäure – Ein Vitamin wie Dr. Jekyll und Mr. Hyde. PZ-Pharmazeutische Zeitung – online, 2002. 48. http://​www.​pharmazeutische-zeitung. de/index.php?id=24758. Zugegriffen: 25. Juli 2017
105.
Zurück zum Zitat SteilingH RM (2009) Castiel I. Bioavaialability and skin bio afficacy of Vitamin C and E. In: Tabor A, Blair RM (Hrsg) Nutritional cosmetics: beauty from within. Elsevier ,William Andrew, Amsterdam, S 113–138 SteilingH RM (2009) Castiel I. Bioavaialability and skin bio afficacy of Vitamin C and E. In: Tabor A, Blair RM (Hrsg) Nutritional cosmetics: beauty from within. Elsevier ,William Andrew, Amsterdam, S 113–138
106.
Zurück zum Zitat Leveque N et al (2002) Decrease in skin ascorbic acid concentration with age. Eur J Dermatol 12(4):XXI–XXIIPubMed Leveque N et al (2002) Decrease in skin ascorbic acid concentration with age. Eur J Dermatol 12(4):XXI–XXIIPubMed
107.
Zurück zum Zitat Passi S et al (2002) Lipophilic antioxidants in human sebum and aging. Free Radic Res 36(4):471–477PubMedCrossRef Passi S et al (2002) Lipophilic antioxidants in human sebum and aging. Free Radic Res 36(4):471–477PubMedCrossRef
108.
Zurück zum Zitat Vidlarova L et al (2016) Nanocrystals for dermal penetration enhancement –effect of concentration and underlying mechanisms using curcumin as model. Eur J Pharm Biopharm 104:216–225PubMedCrossRef Vidlarova L et al (2016) Nanocrystals for dermal penetration enhancement –effect of concentration and underlying mechanisms using curcumin as model. Eur J Pharm Biopharm 104:216–225PubMedCrossRef
109.
Zurück zum Zitat Romero GB et al (2015) Industrial concentrates of dermal hesperidin smartCrystals®-production, characterization & long-term stability. Int J Pharm 482(1–2):54–60PubMedCrossRef Romero GB et al (2015) Industrial concentrates of dermal hesperidin smartCrystals®-production, characterization & long-term stability. Int J Pharm 482(1–2):54–60PubMedCrossRef
110.
Zurück zum Zitat Al Shaal L, Müller RH, Shegokar R (2010) smartCrystal combination technology – scale up from lab to pilot scale and long term stability. Pharmazie 65(12):877–884PubMed Al Shaal L, Müller RH, Shegokar R (2010) smartCrystal combination technology – scale up from lab to pilot scale and long term stability. Pharmazie 65(12):877–884PubMed
111.
Zurück zum Zitat Keck CM, Müller RH (2008) Nanodiamanten – Erhöhte Bioaktivität. Labor More 1:64–65 Keck CM, Müller RH (2008) Nanodiamanten – Erhöhte Bioaktivität. Labor More 1:64–65
112.
Zurück zum Zitat Keck CM, Chen R, Müller RH (2013) SmartCrystals for consumer care & cosmetics: enhanced dermal delivery of poorly soluble plant actives. Househ Pers Care Today 8(5):18–24 Keck CM, Chen R, Müller RH (2013) SmartCrystals for consumer care & cosmetics: enhanced dermal delivery of poorly soluble plant actives. Househ Pers Care Today 8(5):18–24
114.
Zurück zum Zitat Sparavigna A, Tenconi B, De Ponti I (2015) Antiaging, photoprotective, and brightening activity in biorevitalization: a new solution for aging skin. Clin Cosmet Investig Dermatol 8:57–65PubMedPubMedCentralCrossRef Sparavigna A, Tenconi B, De Ponti I (2015) Antiaging, photoprotective, and brightening activity in biorevitalization: a new solution for aging skin. Clin Cosmet Investig Dermatol 8:57–65PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Zastrow L, Lademann J (2016) Light – instead of UV protection: new requirements for skin cancer prevention. Anticancer Res 36(3):1389–1393PubMed Zastrow L, Lademann J (2016) Light – instead of UV protection: new requirements for skin cancer prevention. Anticancer Res 36(3):1389–1393PubMed
116.
Zurück zum Zitat Darvin ME et al (2010) Radical production by infrared A irradiation in human tissue. Skin Pharmacol Physiol 23(1):40–46PubMedCrossRef Darvin ME et al (2010) Radical production by infrared A irradiation in human tissue. Skin Pharmacol Physiol 23(1):40–46PubMedCrossRef
117.
Zurück zum Zitat Darvin ME et al (2010) Formation of free radicals in human skin during irradiation with infrared light. J Invest Dermatol 130(2):629–631PubMedCrossRef Darvin ME et al (2010) Formation of free radicals in human skin during irradiation with infrared light. J Invest Dermatol 130(2):629–631PubMedCrossRef
118.
Zurück zum Zitat Zastrow L et al (2009) UV, visible and infrared light. Which wavelengths produce oxidative stress in human skin? Hautarzt 60(4):310–317PubMedCrossRef Zastrow L et al (2009) UV, visible and infrared light. Which wavelengths produce oxidative stress in human skin? Hautarzt 60(4):310–317PubMedCrossRef
119.
Zurück zum Zitat Zastrow L et al (2009) The missing link – light induced (280–1,600 nm) free radical formation in human skin. Skin Pharmacol Physiol 22(1):31–44PubMedCrossRef Zastrow L et al (2009) The missing link – light induced (280–1,600 nm) free radical formation in human skin. Skin Pharmacol Physiol 22(1):31–44PubMedCrossRef
120.
Zurück zum Zitat Puri P et al (2017) Effects of air pollution on the skin: a review. Indian J Dermatol Venereol Leprol 83(4):415–423PubMedCrossRef Puri P et al (2017) Effects of air pollution on the skin: a review. Indian J Dermatol Venereol Leprol 83(4):415–423PubMedCrossRef
121.
122.
Zurück zum Zitat Kim KE, Cho D, Park HJ (2016) Air pollution and skin diseases: adverse effects of airborne particulate matter on various skin diseases. Life Sci 152:126–134PubMedCrossRef Kim KE, Cho D, Park HJ (2016) Air pollution and skin diseases: adverse effects of airborne particulate matter on various skin diseases. Life Sci 152:126–134PubMedCrossRef
123.
Zurück zum Zitat Krutmann J et al (2016) Environmentally induced (extrinsic) skinaging. Hautarzt 67(2):99–102PubMedCrossRef Krutmann J et al (2016) Environmentally induced (extrinsic) skinaging. Hautarzt 67(2):99–102PubMedCrossRef
124.
Zurück zum Zitat Li M et al (2015) Epidemiological evidence that indoor air pollution from cooking with solid fuels accelerates skin aging in Chinese women. J Dermatol Sci 79(2):148–154PubMedCrossRef Li M et al (2015) Epidemiological evidence that indoor air pollution from cooking with solid fuels accelerates skin aging in Chinese women. J Dermatol Sci 79(2):148–154PubMedCrossRef
125.
Zurück zum Zitat Pan TL et al (2015) The impact of urban particulate pollution on skin barrier function and the subsequent drug absorption. J Dermatol Sci 78(1):51–60PubMedCrossRef Pan TL et al (2015) The impact of urban particulate pollution on skin barrier function and the subsequent drug absorption. J Dermatol Sci 78(1):51–60PubMedCrossRef
126.
Zurück zum Zitat Hsu S (2015) Compounds derived from Epigallocatechin-3-Gallate (EGCG) as a novel approach to the prevention of viral infections. Inflamm Allergy Drug Targets 14(1):13–18PubMedCrossRef Hsu S (2015) Compounds derived from Epigallocatechin-3-Gallate (EGCG) as a novel approach to the prevention of viral infections. Inflamm Allergy Drug Targets 14(1):13–18PubMedCrossRef
127.
Zurück zum Zitat Kong HH, Segre JA (2017) The molecular revolution in cutaneous biology: investigating the skin microbiome. J Invest Dermatol 137(5):e119–e122PubMedCrossRef Kong HH, Segre JA (2017) The molecular revolution in cutaneous biology: investigating the skin microbiome. J Invest Dermatol 137(5):e119–e122PubMedCrossRef
128.
Zurück zum Zitat Kirker KR, James GA (2017) In vitro studies evaluating the effects of biofilms on woundhealing cells: a review. APMIS 125(4):344–352PubMedCrossRef Kirker KR, James GA (2017) In vitro studies evaluating the effects of biofilms on woundhealing cells: a review. APMIS 125(4):344–352PubMedCrossRef
129.
Zurück zum Zitat Igawa S, Di Nardo A (2017) Skin microbiome and mast cells. Trans L Res 184:68–76CrossRef Igawa S, Di Nardo A (2017) Skin microbiome and mast cells. Trans L Res 184:68–76CrossRef
133.
135.
Zurück zum Zitat Zealley B, de Grey AD (2013) Strategies for engineered negligible senescence. Gerontology 59(2):183–189PubMedCrossRef Zealley B, de Grey AD (2013) Strategies for engineered negligible senescence. Gerontology 59(2):183–189PubMedCrossRef
136.
Zurück zum Zitat Kaushik G, Leijten J, Khademhosseini A (2017) Concise review: organ engineering: design, technology, and integration. Stem Cells 35(1):51–60PubMedCrossRef Kaushik G, Leijten J, Khademhosseini A (2017) Concise review: organ engineering: design, technology, and integration. Stem Cells 35(1):51–60PubMedCrossRef
137.
Zurück zum Zitat Husain SR, Ohya Y, Puri RK (2017) Current status and challenges of three-dimensional modeling and printing of tissues and organs. Tissue Eng Part A 23(11–12):471–473PubMedCrossRef Husain SR, Ohya Y, Puri RK (2017) Current status and challenges of three-dimensional modeling and printing of tissues and organs. Tissue Eng Part A 23(11–12):471–473PubMedCrossRef
138.
Zurück zum Zitat Jakus AE, Rutz AL, Shah RN (2016) Advancing the field of 3D biomaterial printing. Biomed Mater 11(1):14102PubMedCrossRef Jakus AE, Rutz AL, Shah RN (2016) Advancing the field of 3D biomaterial printing. Biomed Mater 11(1):14102PubMedCrossRef
Metadaten
Titel
Anti-Aging-Strategien
Innovative Konzepte für die Entwicklung von Anti-Aging-Dermokosmetika
verfasst von
Prof. Dr. Cornelia M. Keck
Publikationsdatum
16.04.2018
Verlag
Springer Vienna
Erschienen in
hautnah / Ausgabe 2/2018
Print ISSN: 1866-2250
Elektronische ISSN: 2192-6484
DOI
https://doi.org/10.1007/s12326-018-0274-8

Weitere Artikel der Ausgabe 2/2018

hautnah 2/2018 Zur Ausgabe