Skip to main content
Erschienen in: Wiener klinisches Magazin 3/2022

12.04.2022 | Forschung

3D-Bioprinting in der regenerativen Therapie von Herz- und Gefäßerkrankungen

Zukunft oder Beginn der klinischen Translation?

verfasst von: PD Dr. Rouven Berndt

Erschienen in: Wiener klinisches Magazin | Ausgabe 3/2022

Einloggen, um Zugang zu erhalten

Zusammenfassung

Die Fähigkeiten des menschlichen Körpers zur Regeneration sind limitiert, und Gewebe und Organspenden sind seit Jahren rückläufig. Moderne Biotechnologie, d. h. Bioengineering und insbesondere der 3D-Biodruck (3D-Bioprinting), wecken die Hoffnung auf eine Verbesserung der Therapie von kardiovaskulären Erkrankungen. Das Ziel des 3D-Bioprinting ist es, die Vorteile der schnellen, präzisen und reproduzierbaren maschinellen Instant-Fertigung, wie sie aus der Industrie bekannt sind, auf lebende, komplexe Strukturen zu übertragen und die so erzeugten Gewebeverbände und Organoide anschließend im Bioreaktor weiterzukultivieren. Drei der häufigsten Bioprinting-Verfahren, d. h. das injektionsbasierte Bioprinting, das laserbasierte Bioprinting und das extrusionsbasierte Bioprinting, sollen im Folgenden, vor dem Hintergrund der Anwendung in der kardiovaskulären Medizin, erläutert werden. Weiterhin werden exemplarisch die aktuellen und zukünftigen Möglichkeiten des 3D-Bioprinting in der kardiovaskulären Medizin vorgestellt.
Literatur
1.
Zurück zum Zitat Michel SG, Madariaga MLL, Villani V, Shanmugarajah K (2015) Current progress in xenotransplantation and organ bioengineering. Int J Surg 13:239–244PubMedCrossRef Michel SG, Madariaga MLL, Villani V, Shanmugarajah K (2015) Current progress in xenotransplantation and organ bioengineering. Int J Surg 13:239–244PubMedCrossRef
2.
Zurück zum Zitat Dawood A, Marti BM, Sauret-Jackson V, Darwood A (2015) 3D printing in dentistry. Br Dent J 219(11):521–529PubMedCrossRef Dawood A, Marti BM, Sauret-Jackson V, Darwood A (2015) 3D printing in dentistry. Br Dent J 219(11):521–529PubMedCrossRef
3.
Zurück zum Zitat Arslan-Yildiz A, El Assal R, Chen P, Guven S, Inci F, Demirci U (2016) Towards artificial tissue models: past, present, and future of 3D bioprinting. Biofabrication 8:14103PubMedCrossRef Arslan-Yildiz A, El Assal R, Chen P, Guven S, Inci F, Demirci U (2016) Towards artificial tissue models: past, present, and future of 3D bioprinting. Biofabrication 8:14103PubMedCrossRef
4.
Zurück zum Zitat Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT (2020) Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials 226:119536PubMedCrossRef Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT (2020) Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials 226:119536PubMedCrossRef
5.
Zurück zum Zitat Li J, Chen M, Fan X, Zhou H (2016) Recent advances in bioprinting techniques: approaches, applications and future prospects. J Transl Med 14(1):1–15CrossRef Li J, Chen M, Fan X, Zhou H (2016) Recent advances in bioprinting techniques: approaches, applications and future prospects. J Transl Med 14(1):1–15CrossRef
6.
Zurück zum Zitat Leberfinger AN, Ravnic DJ, Dhawan A, Ozbolat IT (2017) Concise review: bioprinting of stem cells for transplantable tissue fabrication. Stem Cells Transl Med 6(10):1940–1948PubMedPubMedCentralCrossRef Leberfinger AN, Ravnic DJ, Dhawan A, Ozbolat IT (2017) Concise review: bioprinting of stem cells for transplantable tissue fabrication. Stem Cells Transl Med 6(10):1940–1948PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Boland T, Xu T, Damon B, Cui X (2006) Application of inkjet printing to tissue engineering. Biotechnol J 1(9):910–917PubMedCrossRef Boland T, Xu T, Damon B, Cui X (2006) Application of inkjet printing to tissue engineering. Biotechnol J 1(9):910–917PubMedCrossRef
8.
Zurück zum Zitat Choi CH, Lin LY, Cheng CC, Chang CH (2015) Printed oxide thin film transistors: a mini review. ECS J Solid State Sci Technol 4(4):P3044CrossRef Choi CH, Lin LY, Cheng CC, Chang CH (2015) Printed oxide thin film transistors: a mini review. ECS J Solid State Sci Technol 4(4):P3044CrossRef
9.
Zurück zum Zitat Arnold CB, Serra P, Piqué A (2007) Laser direct-write techniques for printing of complex materials. MRS Bull 32:23–32CrossRef Arnold CB, Serra P, Piqué A (2007) Laser direct-write techniques for printing of complex materials. MRS Bull 32:23–32CrossRef
10.
Zurück zum Zitat Barron JA, Wu P, Ladouceur HD, Ringeisen BR (2004) Biological laser printing: a novel technique for creating heterogeneous 3‑dimensional cell patterns. Biomed Microdevices 6:139–147PubMedCrossRef Barron JA, Wu P, Ladouceur HD, Ringeisen BR (2004) Biological laser printing: a novel technique for creating heterogeneous 3‑dimensional cell patterns. Biomed Microdevices 6:139–147PubMedCrossRef
11.
Zurück zum Zitat Keriquel V, Oliveira H, Remy M, Ziane S, Rousseau B, Rey S, Catros S, Amedee J (2017) In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting for in vivo bone regeneration applications. 7(1):1–10 Keriquel V, Oliveira H, Remy M, Ziane S, Rousseau B, Rey S, Catros S, Amedee J (2017) In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting for in vivo bone regeneration applications. 7(1):1–10
12.
Zurück zum Zitat Guillemot F, Souquet A, Catros S, Guillotin B (2010) Laser-assisted cell printing: principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomedicine 5:507–515PubMedCrossRef Guillemot F, Souquet A, Catros S, Guillotin B (2010) Laser-assisted cell printing: principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomedicine 5:507–515PubMedCrossRef
13.
Zurück zum Zitat Ringeisen BR, Othon CM, Barron JA, Young D, Spargo BJ (2006) Jet-based methods to print living cells. Biotechnol J 1(9):930–948PubMedCrossRef Ringeisen BR, Othon CM, Barron JA, Young D, Spargo BJ (2006) Jet-based methods to print living cells. Biotechnol J 1(9):930–948PubMedCrossRef
14.
Zurück zum Zitat Calvert P (2001) Inkjet printing for materials and devices. Chem Mater 13(10):3299–3305CrossRef Calvert P (2001) Inkjet printing for materials and devices. Chem Mater 13(10):3299–3305CrossRef
15.
Zurück zum Zitat Mironov V (2003) Printing technology to produce living tissue. Expert Opin Biol Ther 3(5):701–704PubMedCrossRef Mironov V (2003) Printing technology to produce living tissue. Expert Opin Biol Ther 3(5):701–704PubMedCrossRef
16.
Zurück zum Zitat Wust S, Godla ME, Muller R, Hofmann S (2014) Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater 10:630–640PubMedCrossRef Wust S, Godla ME, Muller R, Hofmann S (2014) Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater 10:630–640PubMedCrossRef
17.
Zurück zum Zitat Cornelissen M, De Schryver T, Gevaert E, Billiet T, Dubruel P (2013) The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials 35:49–62PubMed Cornelissen M, De Schryver T, Gevaert E, Billiet T, Dubruel P (2013) The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials 35:49–62PubMed
18.
Zurück zum Zitat Ji S, Guvendiren M (2017) Recent advances in bioink design for 3D bioprinting of tissues and organs. Front Bioeng Biotechnol 5:1–8CrossRef Ji S, Guvendiren M (2017) Recent advances in bioink design for 3D bioprinting of tissues and organs. Front Bioeng Biotechnol 5:1–8CrossRef
19.
Zurück zum Zitat Ouyang L, Yao R, Zhao Y, Sun W (2016) Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication 8:1–12CrossRef Ouyang L, Yao R, Zhao Y, Sun W (2016) Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication 8:1–12CrossRef
20.
Zurück zum Zitat Ovsianikov A, Lin S, Holzl K, Tytgat L, Van Vlierberghe S, Gu L (2016) Bioink properties before, during and after 3D bioprinting. Biofabrication 8:32002PubMedCrossRef Ovsianikov A, Lin S, Holzl K, Tytgat L, Van Vlierberghe S, Gu L (2016) Bioink properties before, during and after 3D bioprinting. Biofabrication 8:32002PubMedCrossRef
21.
Zurück zum Zitat Blaeser A, Korsten A, Neuss S, Fischer H, Duarte Campos DF, Jakel J, Vogt M (2014) The stiffness and structure of three-dimensional printed hydrogels direct the differentiation of mesenchymal stromal cells toward adipogenic and osteogenic lineages. Tissue Eng Part A 21:740–756PubMed Blaeser A, Korsten A, Neuss S, Fischer H, Duarte Campos DF, Jakel J, Vogt M (2014) The stiffness and structure of three-dimensional printed hydrogels direct the differentiation of mesenchymal stromal cells toward adipogenic and osteogenic lineages. Tissue Eng Part A 21:740–756PubMed
22.
Zurück zum Zitat Ewald A, Schweinlin M, Schacht K, Jüngst T, Scheibel T, Groll J (2015) Biofabrication of cell-loaded 3D spider silk constructs. Angew Chem Int Ed 54:2816–2820CrossRef Ewald A, Schweinlin M, Schacht K, Jüngst T, Scheibel T, Groll J (2015) Biofabrication of cell-loaded 3D spider silk constructs. Angew Chem Int Ed 54:2816–2820CrossRef
23.
Zurück zum Zitat Pescosolido L, Schuurman W, Malda J, Matricardi P, Alhaique F, Coviello T, Van Weeren PR, Dhert WJA, Hennink WE, Vermonden T (2011) Hyaluronic acid and dextran-based semi-IPN hydrogels as biomaterials for bioprinting. Biomacromolecules 12:1831–1838PubMedCrossRef Pescosolido L, Schuurman W, Malda J, Matricardi P, Alhaique F, Coviello T, Van Weeren PR, Dhert WJA, Hennink WE, Vermonden T (2011) Hyaluronic acid and dextran-based semi-IPN hydrogels as biomaterials for bioprinting. Biomacromolecules 12:1831–1838PubMedCrossRef
24.
Zurück zum Zitat Busbee TA, Lewis JA, Kolesky DB, Truby RL, Gladman AS, Homan KA (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26:3124–3130PubMedCrossRef Busbee TA, Lewis JA, Kolesky DB, Truby RL, Gladman AS, Homan KA (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26:3124–3130PubMedCrossRef
25.
Zurück zum Zitat Atala A, Yoo JJ, Zhao W, Dice D, Binder KW, Xu T, Albanna MZ (2012) Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5:15001PubMedCrossRef Atala A, Yoo JJ, Zhao W, Dice D, Binder KW, Xu T, Albanna MZ (2012) Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5:15001PubMedCrossRef
26.
Zurück zum Zitat Zhang YS, Arneri A, Bersini S, Shin SR, Zhu K, Goli-Malekabadi Z et al (2016) Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110:45–59PubMedPubMedCentralCrossRef Zhang YS, Arneri A, Bersini S, Shin SR, Zhu K, Goli-Malekabadi Z et al (2016) Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110:45–59PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Boland T, Aho M, Zile M, Xu T, Baicu C (2009) Fabrication and characterization of bio-engineered cardiac pseudo tissues. Biofabrication 1:35001PubMedPubMedCentralCrossRef Boland T, Aho M, Zile M, Xu T, Baicu C (2009) Fabrication and characterization of bio-engineered cardiac pseudo tissues. Biofabrication 1:35001PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Liu J, Wang W, Steinhoff G, Gaebel R, Toelk A, Ma N, Wang F, Mark P, Li W, Gruene M, Koch L, Guan J, Chichkov B, Klopsch C (2011) Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials 32:9218–9230PubMedCrossRef Liu J, Wang W, Steinhoff G, Gaebel R, Toelk A, Ma N, Wang F, Mark P, Li W, Gruene M, Koch L, Guan J, Chichkov B, Klopsch C (2011) Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials 32:9218–9230PubMedCrossRef
29.
Zurück zum Zitat Gaetani R, Doevendans PA, Metz CHG, Alblas J, Messina E, Giacomello A, Sluijter JPG (2012) Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials 33:1782–1790PubMedCrossRef Gaetani R, Doevendans PA, Metz CHG, Alblas J, Messina E, Giacomello A, Sluijter JPG (2012) Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials 33:1782–1790PubMedCrossRef
30.
Zurück zum Zitat Jang J, Park HJ, Kim SW, Kim H, Park JY, Na SJ, Cho DW (2017) 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials 112:264–274PubMedCrossRef Jang J, Park HJ, Kim SW, Kim H, Park JY, Na SJ, Cho DW (2017) 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials 112:264–274PubMedCrossRef
31.
Zurück zum Zitat Maiullari F, Costantini M, Milan M, Pace V, Chirivi M, Maiullari S, Rainer A, Baci D, Marei HES, Seliktar D, Gargioli C, Bearzi C, Rizzi R (2018) A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes. Sci Rep 8:1CrossRef Maiullari F, Costantini M, Milan M, Pace V, Chirivi M, Maiullari S, Rainer A, Baci D, Marei HES, Seliktar D, Gargioli C, Bearzi C, Rizzi R (2018) A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes. Sci Rep 8:1CrossRef
32.
Zurück zum Zitat Deuse T, Hu X, Gravina A, Wang D, Tediashvili G, De C et al (2019) Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat Biotechnol 37(3):252–258PubMedPubMedCentralCrossRef Deuse T, Hu X, Gravina A, Wang D, Tediashvili G, De C et al (2019) Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat Biotechnol 37(3):252–258PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Noor N, Shapira A, Edri R, Gal I, Wertheim L, Dvir T (2019) 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv Sci 6:1900344CrossRef Noor N, Shapira A, Edri R, Gal I, Wertheim L, Dvir T (2019) 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv Sci 6:1900344CrossRef
34.
Zurück zum Zitat Mahara A, Somekawa S, Kobayashi N, Hirano Y, Kimura Y, Fujisato T, Yamaoka T (2015) Tissue-engineered acellular small diameter long-bypass grafts with neointima-inducing activity. Biomaterials 58:54–62PubMedCrossRef Mahara A, Somekawa S, Kobayashi N, Hirano Y, Kimura Y, Fujisato T, Yamaoka T (2015) Tissue-engineered acellular small diameter long-bypass grafts with neointima-inducing activity. Biomaterials 58:54–62PubMedCrossRef
36.
Zurück zum Zitat Zhang Y, Yu Y, Akkouch A, Dababneh A, Dolati F, Ozbolat IT (2015) In vitro study of directly bioprinted perfusable vasculature conduits. Biomater Sci 3(1):134–143PubMedCrossRef Zhang Y, Yu Y, Akkouch A, Dababneh A, Dolati F, Ozbolat IT (2015) In vitro study of directly bioprinted perfusable vasculature conduits. Biomater Sci 3(1):134–143PubMedCrossRef
37.
Zurück zum Zitat Wang Z, Liu L, Mithieux SM, Weiss AS (2020) Fabricating organized elastin in vascular grafts. Trends Biotechnol 39(5):505–518PubMedCrossRef Wang Z, Liu L, Mithieux SM, Weiss AS (2020) Fabricating organized elastin in vascular grafts. Trends Biotechnol 39(5):505–518PubMedCrossRef
38.
Zurück zum Zitat Xu C, Chai W, Huang Y, Markwald RR (2012) Scaffold‐free inkjet printing of three‐dimensional zigzag cellular tubes. Biotechnology and bioengineering 109(12):3152–3160PubMedCrossRef Xu C, Chai W, Huang Y, Markwald RR (2012) Scaffold‐free inkjet printing of three‐dimensional zigzag cellular tubes. Biotechnology and bioengineering 109(12):3152–3160PubMedCrossRef
Metadaten
Titel
3D-Bioprinting in der regenerativen Therapie von Herz- und Gefäßerkrankungen
Zukunft oder Beginn der klinischen Translation?
verfasst von
PD Dr. Rouven Berndt
Publikationsdatum
12.04.2022
Verlag
Springer Vienna
Erschienen in
Wiener klinisches Magazin / Ausgabe 3/2022
Print ISSN: 1869-1757
Elektronische ISSN: 1613-7817
DOI
https://doi.org/10.1007/s00740-022-00443-2

Weitere Artikel der Ausgabe 3/2022

Wiener klinisches Magazin 3/2022 Zur Ausgabe

panorama

panorama