Exp Clin Endocrinol Diabetes 2011; 119(7): 431-435
DOI: 10.1055/s-0031-1277162
Article

© J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York

Novel PHEX Nonsense Mutation in a Patient with X-Linked Hypophosphatemic Rickets and Review of Current Therapeutic Regimens

T. Kienitz1 , M. Ventz1 , E. Kaminsky2 , M. Quinkler1
  • 1Department of Clinical Endocrinology, Charité University Medicine Berlin, Campus Mitte, Berlin, Germany
  • 2Laboratory for Molecular Genetics, Hamburg, Germany
Further Information

Publication History

received 21.12.2010 first decision 21.12.2010

accepted 11.04.2011

Publication Date:
06 May 2011 (online)

Abstract

Introduction: The most common form of familial hypophosphatemic rickets is X-linked. PHEX has been identified as the gene defective in this phosphate wasting disorder leading to decreased renal phosphate reabsorption, hypophosphatemia and inappropriate concentrations of 1,25-dihydroxyvitamin D in regard to hypophosphatemia. Clinical manifestation are skeletal deformities, short stature, osteomalacia, dental abscesses, bone pain, and loss of hearing.

Subjects and methods: We report 3 cases of hypophosphatemic rickets with genetic mutational analysis of the PHEX gene. In 1 male patient an unknown nonsense mutation was found in exon 7, codon 245 (c.735T>G, Tyr245Term, Y245X). In both female patients known mutations were found: c.682delTC (exon 6, codon 228) and c.1952G>C (exon 19, codon 651, R651P). Age at diagnosis ranged from early childhood to the age of 35 years. Clinical complications were hip replacement in 1 patient, mild nephrocalcinosis in 2 patients and loss of hearing in 1 patient. All 3 patients have been treated with phosphate supplements and receive 1,25-dihydroxyvitamin D. Under this regimen all patients show stable biochemical markers with slight hyperparathyreoidism. In all patients at least one family member is affected by rickets, as well.

Conclusions: We report a novel nonsense mutation of PHEX that has not been identified so far. The recent discovery of FGF23 and MEPE has changed our understanding of the kidney-bone metabolism, but also raises concerns about the efficacy of current therapeutic regimens that are reviewed in this context.

References

  • 1 Francis F, Hennig S, Korn B. et al . A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. The HYP Consortium.  Nat Genet. 1995;  11 130-136
  • 2 Alon US, Monzavi R, Lilien M. et al . Hypertension in hypophosphatemic rickets – role of secondary hyperparathyroidism.  Pediatr Nephrol. 2003;  18 155-158
  • 3 Aono Y, Yamazaki Y, Yasutake J. et al . Therapeutic effects of anti-FGF23 antibodies in hypophosphatemic rickets/osteomalacia.  J Bone Miner Res. 2009;  24 1879-1888
  • 4 Argiro L, Desbarats M, Glorieux FH. et al . Mepe, the gene encoding a tumor-secreted protein in oncogenic hypophosphatemic osteomalacia, is expressed in bone.  Genomics. 2001;  74 342-351
  • 5 Beck L, Soumounou Y, Martel J. et al . Pex/PEX tissue distribution and evidence for a deletion in the 3′ region of the Pex gene in X-linked hypophosphatemic mice.  J Clin Invest. 1997;  99 1200-1209
  • 6 Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V. et al . The parathyroid is a target organ for FGF23 in rats.  J Clin Invest. 2007;  117 4003-4008
  • 7 Benet-Pages A, Lorenz-Depiereux B, Zischka H. et al . FGF23 is processed by proprotein convertases but not by PHEX.  Bone. 2004;  35 455-462
  • 8 Burnett SM, Gunawardene SC, Bringhurst FR. et al . Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women.  J Bone Miner Res. 2006;  21 1187-1196
  • 9 Davies M, Kane R, Valentine J. Impaired hearing in X-linked hypophosphataemic (vitamin-D-resistant) osteomalacia.  Ann Intern Med. 1984;  100 230-232
  • 10 Econs MJ, Samsa GP, Monger M. et al . X-Linked hypophosphatemic rickets: a disease often unknown to affected patients.  Bone Miner. 1994;  24 17-24
  • 11 Eddy MC, McAlister WH, Whyte MP. X-linked hypophosphatemia: normal renal function despite medullary nephrocalcinosis 25 years after transient vitamin D2-induced renal azotemia.  Bone. 1997;  21 515-520
  • 12 Endo I, Fukumoto S, Ozono K. et al . Clinical usefulness of measurement of fibroblast growth factor 23 (FGF23) in hypophosphatemic patients: proposal of diagnostic criteria using FGF23 measurement.  Bone. 2008;  42 1235-1239
  • 13 Feng JQ, Ward LM, Liu S. et al . Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism.  Nat Genet. 2006;  38 1310-1315
  • 14 Fishman G, Miller-Hansen D, Jacobsen C. et al . Hearing impairment in familial X-linked hypophosphatemic rickets.  Eur J Pediatr. 2004;  163 622-623
  • 15 Francis F, Strom TM, Hennig S. et al . Genomic organization of the human PEX gene mutated in X-linked dominant hypophosphatemic rickets.  Genome Res. 1997;  7 573-585
  • 16 Grieff M, Mumm S, Waeltz P. et al . Expression and cloning of the human X-linked hypophosphatemia gene cDNA.  Biochem Biophys Res Commun. 1997;  231 635-639
  • 17 Holm IA, Nelson AE, Robinson BG. et al . Mutational analysis and genotype-phenotype correlation of the PHEX gene in X-linked hypophosphatemic rickets.  J Clin Endocrinol Metab. 2001;  86 3889-3899
  • 18 Imel EA, DiMeglio LA, Hui SL. et al . Treatment of X-linked hypophosphatemia with calcitriol and phosphate increases circulating fibroblast growth factor 23 concentrations.  J Clin Endocrinol Metab. 2010;  95 1846-1850
  • 19 Jonsson KB, Zahradnik R, Larsson T. et al . Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia.  N Engl J Med. 2003;  348 1656-1663
  • 20 Krajisnik T, Bjorklund P, Marsell R. et al . Fibroblast growth factor-23 regulates parathyroid hormone and 1alpha-hydroxylase expression in cultured bovine parathyroid cells.  J Endocrinol. 2007;  195 125-131
  • 21 Liu S, Guo R, Simpson LG. et al . Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX.  J Biol Chem. 2003;  278 37419-37426
  • 22 Liu S, Vierthaler L, Tang W. et al . FGFR3 and FGFR4 do not mediate renal effects of FGF23.  J Am Soc Nephrol. 2008;  19 2342-2350
  • 23 Meisler M. Mutation watch: PEX PLUS? Gene(s) for X-linked hypophosphatemia and deafness.  Mamm Genome. 1997;  8 543-544
  • 24 Meister M, Johnson A, Popelka GR. et al . Audiologic findings in young patients with hypophosphatemic bone disease.  Ann Otol Rhinol Laryngol. 1986;  95 415-420
  • 25 Nehgme R, Fahey JT, Smith C. et al . Cardiovascular abnormalities in patients with X-linked hypophosphatemia.  J Clin Endocrinol Metab. 1997;  82 2450-2454
  • 26 Raeder H, Shaw N, Netelenbos C. et al . A case of X-linked hypophosphatemic rickets: complications and the therapeutic use of cinacalcet.  Eur J Endocrinol. 2008;  159 (S 01) S101-S105
  • 27 Rowe PS. The wrickkened pathways of FGF23, MEPE and PHEX.  Crit Rev Oral Biol Med. 2004;  15 264-281
  • 28 Rowe PS, de Zoysa PA, Dong R. et al . MEPE, a new gene expressed in bone marrow and tumors causing osteomalacia.  Genomics. 2000;  67 54-68
  • 29 Ruchon AF, Marcinkiewicz M, Siegfried G. et al . Pex mRNA is localized in developing mouse osteoblasts and odontoblasts.  J Histochem Cytochem. 1998;  46 459-468
  • 30 Sabbagh Y, Jones AO, Tenenhouse HS. PHEXdb, a locus-specific database for mutations causing X-linked hypophosphatemia.  Hum Mutat. 2000;  16 1-6
  • 31 Saito H, Maeda A, Ohtomo S. et al . Circulating FGF-23 is regulated by 1alpha,25-dihydroxyvitamin D3 and phosphorus in vivo.  J Biol Chem. 2005;  280 2543-2549
  • 32 Shimada T, Hasegawa H, Yamazaki Y. et al . FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis.  J Bone Miner Res. 2004;  19 429-435
  • 33 Sitara D, Razzaque MS, Hesse M. et al . Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex-deficient mice.  Matrix Biol. 2004;  23 421-432
  • 34 Tenenhouse HS. X-linked hypophosphataemia: a homologous disorder in humans and mice.  Nephrol Dial Transplant. 1999;  14 333-341
  • 35 Urakawa I, Yamazaki Y, Shimada T. et al . Klotho converts canonical FGF receptor into a specific receptor for FGF23.  Nature. 2006;  444 770-774
  • 36 Verge CF, Lam A, Simpson JM. et al . Effects of therapy in X-linked hypophosphatemic rickets.  N Engl J Med. 1991;  325 1843-1848
  • 37 Weber TJ, Liu S, Indridason OS. et al . Serum FGF23 levels in normal and disordered phosphorus homeostasis.  J Bone Miner Res. 2003;  18 1227-1234
  • 38 Yamazaki Y, Okazaki R, Shibata M. et al . Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia.  J Clin Endocrinol Metab. 2002;  87 4957-4960

Correspondence

M. QuinklerMD 

Department of Clinical

Endocrinology

Charité Campus Mitte

Charité University Medicine

Berlin

Charitéplatz 1

D-10117 Berlin

Germany

Phone: +49/30/45051 4259

Fax: +49/30/45051 4958

Email: marcus.quinkler@charite.de

    >