Skip to main content
Erschienen in: memo - Magazine of European Medical Oncology 4/2014

01.12.2014 | special report

Towards automation of flow cytometric analysis for quality-assured follow-up assessment to guide curative therapy for acute lymphoblastic leukaemia in children

verfasst von: Michael Reiter, Jana Hoffmann, Florian Kleber, Angela Schumich, Gerald Peter, Florian Kromp, Martin Kampel, Michael Dworzak

Erschienen in: memo - Magazine of European Medical Oncology | Ausgabe 4/2014

Einloggen, um Zugang zu erhalten

Abstract

Minimal residual disease (MRD) is of high prognostic value in risk stratification in childhood acute lymphoblastic leukaemia. Flow cytometry (FCM) was shown to yield reliable results in MRD measurement. However, the interpretation of FCM data relies largely on operator skills and experience. While sample preparation, antibody panels, staining procedures and flow cytometric acquisition can be standardized, easily controlled and be made available worldwide, the availability of experienced operators represents the current bottleneck to a growing number of laboratories to the benefit of an increasing number of patients with leukaemia. Currently, international paediatric studies—throughout Europe, South America, to Australia—aim at stratifying the treatment according to the FCM-MRD methodology. The measurements are still operator-dependent leading to substantial costs regarding training and quality control. This article introduces a new European Union-funded project (AutoFLOW) aiming at the standardization and automation of FCM-MRD analysis by machine-learning technology.
Literatur
1.
Zurück zum Zitat Pui C-H, Robison LL, Look AT. Acute lymphoblastic leukaemia. Lancet. 2008;371(9617):1030–43.PubMedCrossRef Pui C-H, Robison LL, Look AT. Acute lymphoblastic leukaemia. Lancet. 2008;371(9617):1030–43.PubMedCrossRef
2.
Zurück zum Zitat Stanulla M, Schrappe M. Treatment of childhood acute lymphoblastic leukemia. Semin Hematol. 2009;46(1):52–63.PubMedCrossRef Stanulla M, Schrappe M. Treatment of childhood acute lymphoblastic leukemia. Semin Hematol. 2009;46(1):52–63.PubMedCrossRef
3.
Zurück zum Zitat Eckert C, Henze G, Seeger K, et al. Use of allogeneic hematopoietic stem-cell transplantation based on minimal residual disease response improves outcomes for children with relapsed acute lymphoblastic leukemia in the intermediate-risk group. J Clin Oncol. 2013;31(21):2736–42.PubMedCrossRef Eckert C, Henze G, Seeger K, et al. Use of allogeneic hematopoietic stem-cell transplantation based on minimal residual disease response improves outcomes for children with relapsed acute lymphoblastic leukemia in the intermediate-risk group. J Clin Oncol. 2013;31(21):2736–42.PubMedCrossRef
4.
Zurück zum Zitat Basso G, Veltroni M, Valsecchi MG, et al. Risk of relapse of childhood acute lymphoblastic leukemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow. J Clin Oncol. 2009;27(31):5168–74.PubMedCrossRef Basso G, Veltroni M, Valsecchi MG, et al. Risk of relapse of childhood acute lymphoblastic leukemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow. J Clin Oncol. 2009;27(31):5168–74.PubMedCrossRef
6.
Zurück zum Zitat Schrappe M. Minimal residual disease: optimal methods, timing, and clinical relevance for an individual patient. Hematol Educ Program Am Soc Hematol. 2012;2012:137–42. Schrappe M. Minimal residual disease: optimal methods, timing, and clinical relevance for an individual patient. Hematol Educ Program Am Soc Hematol. 2012;2012:137–42.
7.
Zurück zum Zitat Naim I, Datta S, Rebhahn J, Cavenaugh JS, Mosmann TR, Sharma G. SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 1: algorithm design: SWIFT Flow Cytometry Clustering—Part 1. Cytometry A. 2014;85(5):408–21.PubMedCentralPubMedCrossRef Naim I, Datta S, Rebhahn J, Cavenaugh JS, Mosmann TR, Sharma G. SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 1: algorithm design: SWIFT Flow Cytometry Clustering—Part 1. Cytometry A. 2014;85(5):408–21.PubMedCentralPubMedCrossRef
8.
Zurück zum Zitat Cron A, Gouttefangeas C, Frelinger J, et al. Hierarchical modeling for rare event detection and cell subset alignment across flow cytometry samples. PLoS Comput Biol. 2013;9(7):e1003130.PubMedCentralPubMedCrossRef Cron A, Gouttefangeas C, Frelinger J, et al. Hierarchical modeling for rare event detection and cell subset alignment across flow cytometry samples. PLoS Comput Biol. 2013;9(7):e1003130.PubMedCentralPubMedCrossRef
9.
Zurück zum Zitat Aghaeepour N, Nikolic R, Hoos HH, Brinkman RR. Rapid cell population identification in flow cytometry data. Cytom Part J Int Soc Anal Cytol. 2011;79(1):6–13.CrossRef Aghaeepour N, Nikolic R, Hoos HH, Brinkman RR. Rapid cell population identification in flow cytometry data. Cytom Part J Int Soc Anal Cytol. 2011;79(1):6–13.CrossRef
10.
Zurück zum Zitat Zare H, Shooshtari P, Gupta A, Brinkman RR. Data reduction for spectral clustering to analyze high throughput flow cytometry data. BMC Bioinformatics. 2010;11:403.PubMedCentralPubMedCrossRef Zare H, Shooshtari P, Gupta A, Brinkman RR. Data reduction for spectral clustering to analyze high throughput flow cytometry data. BMC Bioinformatics. 2010;11:403.PubMedCentralPubMedCrossRef
11.
Zurück zum Zitat Costa ES, Pedreira CE, Barrena S, et al. Automated pattern-guided principal component analysis vs expert-based immunophenotypic classification of B-cell chronic lymphoproliferative disorders: a step forward in the standardization of clinical immunophenotyping. Leukemia. 2010;24(11):1927–33.PubMedCentralPubMedCrossRef Costa ES, Pedreira CE, Barrena S, et al. Automated pattern-guided principal component analysis vs expert-based immunophenotypic classification of B-cell chronic lymphoproliferative disorders: a step forward in the standardization of clinical immunophenotyping. Leukemia. 2010;24(11):1927–33.PubMedCentralPubMedCrossRef
12.
Zurück zum Zitat Finak G, Bashashati A, Brinkman R, Gottardo R. Merging mixture components for cell population identification in flow cytometry. Adv Bioinformatics. 2009;2009:247646. Finak G, Bashashati A, Brinkman R, Gottardo R. Merging mixture components for cell population identification in flow cytometry. Adv Bioinformatics. 2009;2009:247646.
13.
Zurück zum Zitat Lo K, Hahne F, Brinkman RR, Gottardo R. flowClust: a bioconductor package for automated gating of flow cytometry data. BMC Bioinformatics. 2009;10:145–145.PubMedCentralPubMedCrossRef Lo K, Hahne F, Brinkman RR, Gottardo R. flowClust: a bioconductor package for automated gating of flow cytometry data. BMC Bioinformatics. 2009;10:145–145.PubMedCentralPubMedCrossRef
15.
Zurück zum Zitat Finn WG, Carter KM, Raich R, Stoolman LM, Hero AO. Analysis of clinical flow cytometric immunophenotyping data by clustering on statistical manifolds: treating flow cytometry data as high-dimensional objects. Cytometry B Clin Cytom. 2009;76(1):1–7.PubMedCrossRef Finn WG, Carter KM, Raich R, Stoolman LM, Hero AO. Analysis of clinical flow cytometric immunophenotyping data by clustering on statistical manifolds: treating flow cytometry data as high-dimensional objects. Cytometry B Clin Cytom. 2009;76(1):1–7.PubMedCrossRef
16.
Zurück zum Zitat Walther G, Zimmerman N, Moore W, et al. Automatic clustering of flow cytometry data with density-based merging. Adv Bioinforma. 2009;2009:686759.CrossRef Walther G, Zimmerman N, Moore W, et al. Automatic clustering of flow cytometry data with density-based merging. Adv Bioinforma. 2009;2009:686759.CrossRef
17.
Zurück zum Zitat Qian Y, Wei C, Eun-Hyung Lee F, et al. Elucidation of seventeen human peripheral blood B-cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data. Cytometry B Clin Cytom. 2010;78(Suppl. 1):S69–82.PubMedCentralPubMedCrossRef Qian Y, Wei C, Eun-Hyung Lee F, et al. Elucidation of seventeen human peripheral blood B-cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data. Cytometry B Clin Cytom. 2010;78(Suppl. 1):S69–82.PubMedCentralPubMedCrossRef
18.
Zurück zum Zitat Aghaeepour N, Finak G, Hoos H, et al. Critical assessment of automated flow cytometry data analysis techniques. Nat Methods. 2013;10(3):228–38.PubMedCentralPubMedCrossRef Aghaeepour N, Finak G, Hoos H, et al. Critical assessment of automated flow cytometry data analysis techniques. Nat Methods. 2013;10(3):228–38.PubMedCentralPubMedCrossRef
19.
20.
Zurück zum Zitat Bishop C. Pattern recognition and machine learning (information science and statistics). Secaucus: Springer-Verlag New York, Inc.; 2006. Bishop C. Pattern recognition and machine learning (information science and statistics). Secaucus: Springer-Verlag New York, Inc.; 2006.
Metadaten
Titel
Towards automation of flow cytometric analysis for quality-assured follow-up assessment to guide curative therapy for acute lymphoblastic leukaemia in children
verfasst von
Michael Reiter
Jana Hoffmann
Florian Kleber
Angela Schumich
Gerald Peter
Florian Kromp
Martin Kampel
Michael Dworzak
Publikationsdatum
01.12.2014
Verlag
Springer Vienna
Erschienen in
memo - Magazine of European Medical Oncology / Ausgabe 4/2014
Print ISSN: 1865-5041
Elektronische ISSN: 1865-5076
DOI
https://doi.org/10.1007/s12254-014-0172-6

Weitere Artikel der Ausgabe 4/2014

memo - Magazine of European Medical Oncology 4/2014 Zur Ausgabe

editorial

Angiogenesis