Skip to main content
Erschienen in: Wiener Medizinische Wochenschrift 7-8/2016

01.05.2016 | main topic

Endocytosis in enterocytes

verfasst von: Univ.-Prof. Dr. Klaus-Peter Zimmer, Jan de Laffolie, Maria Vittoria Barone, Hassan Y. Naim

Erschienen in: Wiener Medizinische Wochenschrift | Ausgabe 7-8/2016

Einloggen, um Zugang zu erhalten

Summary

Endocytosis is a fundamental cell biological process, which carries out essential functions in a polarized epithelial cell such as enterocytes provided with a huge surface area of the brush border membrane. Major tasks of enterocytes, which are regulated by endocytic signals, are digestion and absorption of nutrients and drugs/pharmacological agents, barrier permeability to microorganism, toxins and antigens, and transcytotic crosstalk between intestinal lumen and lamina propria cells with access to the circulation.
Investigations on inflammatory bowel diseases such as food allergy, celiac disease, Crohn’s disease, and ulcerative colitis focus on immune processes originating within enterocytes as antigen presenting cells. Thus the initiation of oral tolerance, that is, the binding of food antigens to MHC class II proteins, might be localized within late endosomes of enterocytes. Furthermore, the late endosomal compartment of enterocytes seems to be involved in the processing of luminal antigens during the pathogenesis of celiac disease and inflammatory bowel diseases. Investigations of inherited diseases such as microvillus inclusion disease have revealed a pathogenetic defect in the autophagocytotic and/or recycling pathway of enterocytes.
Our progress in the cell and molecular biological understanding of the endocytosis and the methodical opportunities of translational research offer now new therapeutic options for patients suffering from endocytosis-related diseases of enterocytes.
Literatur
1.
Zurück zum Zitat Metschnikow E. Über Geodesmus bilineatus Nob. (Fasciola terrestris O. Fr. Müller?), eine europäische Landplanarie. Mélanges Biol Bull Acad Imp Sci St Pétersbg; 1866;5:544–65. Metschnikow E. Über Geodesmus bilineatus Nob. (Fasciola terrestris O. Fr. Müller?), eine europäische Landplanarie. Mélanges Biol Bull Acad Imp Sci St Pétersbg; 1866;5:544–65.
2.
Zurück zum Zitat Helenius A, Mellman I, Wall D, Hubbard A. Endosomes. Trends Biochem Science. 1983;8:245–50.CrossRef Helenius A, Mellman I, Wall D, Hubbard A. Endosomes. Trends Biochem Science. 1983;8:245–50.CrossRef
4.
Zurück zum Zitat Griffiths G, Simons K. The trans Golgi network: sorting at the exit site of the Golgi complex. Science. 1986;234(4775):438–43.CrossRefPubMed Griffiths G, Simons K. The trans Golgi network: sorting at the exit site of the Golgi complex. Science. 1986;234(4775):438–43.CrossRefPubMed
5.
Zurück zum Zitat Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986;232(4746):34–47.CrossRefPubMed Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986;232(4746):34–47.CrossRefPubMed
6.
Zurück zum Zitat Reggio H, Bainton D, Harms E, Coudrier E, Louvard D. Antibodies against lysosomal membranes reveal a 100,000-mol-wt protein that cross-reacts with purified H+,K + ATPase from gastric mucosa. J Cell Biol. 1984;99(4 Pt 1):1511–26.CrossRefPubMed Reggio H, Bainton D, Harms E, Coudrier E, Louvard D. Antibodies against lysosomal membranes reveal a 100,000-mol-wt protein that cross-reacts with purified H+,K + ATPase from gastric mucosa. J Cell Biol. 1984;99(4 Pt 1):1511–26.CrossRefPubMed
7.
Zurück zum Zitat Green SA, Zimmer KP, Griffiths G, Mellman I. Kinetics of intracellular transport and sorting of lysosomal membrane and plasma membrane proteins. J Cell Biol. 1987;105(3):1227–40.CrossRefPubMed Green SA, Zimmer KP, Griffiths G, Mellman I. Kinetics of intracellular transport and sorting of lysosomal membrane and plasma membrane proteins. J Cell Biol. 1987;105(3):1227–40.CrossRefPubMed
8.
Zurück zum Zitat Doms RW, Helenius A, White J. Membrane fusion activity of the influenza virus hemagglutinin. The low pH-induced conformational change. J Biol Chem. 1985;260(5):2973–81.PubMed Doms RW, Helenius A, White J. Membrane fusion activity of the influenza virus hemagglutinin. The low pH-induced conformational change. J Biol Chem. 1985;260(5):2973–81.PubMed
9.
Zurück zum Zitat Schmid SL, Sorkin A, Zerial M. Endocytosis: past, present, and future. Cold Spring Harb Perspect Biol. 2014;6(12):a022509.CrossRefPubMed Schmid SL, Sorkin A, Zerial M. Endocytosis: past, present, and future. Cold Spring Harb Perspect Biol. 2014;6(12):a022509.CrossRefPubMed
10.
Zurück zum Zitat Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med. 2013;368(7):651–62.CrossRefPubMed Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med. 2013;368(7):651–62.CrossRefPubMed
11.
Zurück zum Zitat Christiansen K, Carlsen J. Microvillus membrane vesicles from pig small intestine. Purity and lipid composition. Biochim Biophys Acta. 1981;647(2):188–95.CrossRefPubMed Christiansen K, Carlsen J. Microvillus membrane vesicles from pig small intestine. Purity and lipid composition. Biochim Biophys Acta. 1981;647(2):188–95.CrossRefPubMed
12.
Zurück zum Zitat Steed E, Balda MS, Matter K Dynamics and functions of tight junctions. Trends Cell Biol. 2010;20(3):142–9.CrossRefPubMed Steed E, Balda MS, Matter K Dynamics and functions of tight junctions. Trends Cell Biol. 2010;20(3):142–9.CrossRefPubMed
13.
Zurück zum Zitat Kaser A, Niederreiter L, Blumberg RS. Genetically determined epithelial dysfunction and its consequences for microflora-host interactions. Cell Mol Life Sci. 2011;68(22):3643–9.CrossRefPubMedPubMedCentral Kaser A, Niederreiter L, Blumberg RS. Genetically determined epithelial dysfunction and its consequences for microflora-host interactions. Cell Mol Life Sci. 2011;68(22):3643–9.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Leitner K, Ellinger A, Zimmer KP, Ellinger I, Fuchs R, Localization of beta 2-microglobulin in the term villous syncytiotrophoblast. Histochem Cell Biol. 2002;117(2):187–93.CrossRefPubMed Leitner K, Ellinger A, Zimmer KP, Ellinger I, Fuchs R, Localization of beta 2-microglobulin in the term villous syncytiotrophoblast. Histochem Cell Biol. 2002;117(2):187–93.CrossRefPubMed
16.
Zurück zum Zitat Liao Y, Jiang R, Lonnerdal B. Biochemical and molecular impacts of lactoferrin on small intestinal growth and development during early life. Biochem Cell Biol. 2012;90(3):476–84.CrossRefPubMed Liao Y, Jiang R, Lonnerdal B. Biochemical and molecular impacts of lactoferrin on small intestinal growth and development during early life. Biochem Cell Biol. 2012;90(3):476–84.CrossRefPubMed
17.
Zurück zum Zitat Strobel S, Mowat AM. Immune responses to dietary antigens: oral tolerance. Immunol Today. 1998;19(4):173–81.CrossRefPubMed Strobel S, Mowat AM. Immune responses to dietary antigens: oral tolerance. Immunol Today. 1998;19(4):173–81.CrossRefPubMed
18.
Zurück zum Zitat Zimmer KP, Buning J, Weber P, Kaiserlian D, Strobel S. Modulation of antigen trafficking to MHC class II-positive late endosomes of enterocytes. Gastroenterology. 2000;118(1):128–37.CrossRefPubMed Zimmer KP, Buning J, Weber P, Kaiserlian D, Strobel S. Modulation of antigen trafficking to MHC class II-positive late endosomes of enterocytes. Gastroenterology. 2000;118(1):128–37.CrossRefPubMed
19.
Zurück zum Zitat Buning J, Schmitz M, Repenning B, Ludwig D, Schmidt MA, Strobel S, et al. Interferon-gamma mediates antigen trafficking to MHC class II-positive late endosomes of enterocytes. Eur Immunol. 2005;35(3):831–42.CrossRef Buning J, Schmitz M, Repenning B, Ludwig D, Schmidt MA, Strobel S, et al. Interferon-gamma mediates antigen trafficking to MHC class II-positive late endosomes of enterocytes. Eur Immunol. 2005;35(3):831–42.CrossRef
20.
Zurück zum Zitat Buning J, Smolinski D von, Tafazzoli K, Zimmer KP, Strobel S, Apostolaki M, et al. Multivesicular bodies in intestinal epithelial cells: responsible for MHC class II-restricted antigen processing and origin of exosomes. Immunology. 2008;125(4):510–21.CrossRefPubMedPubMedCentral Buning J, Smolinski D von, Tafazzoli K, Zimmer KP, Strobel S, Apostolaki M, et al. Multivesicular bodies in intestinal epithelial cells: responsible for MHC class II-restricted antigen processing and origin of exosomes. Immunology. 2008;125(4):510–21.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Telega GW, Baumgart DC, Carding SR. Uptake and presentation of antigen to T cells by primary colonic epithelial cells in normal and diseased states. Gastroenterology. 2000;119(6):1548–59.CrossRefPubMed Telega GW, Baumgart DC, Carding SR. Uptake and presentation of antigen to T cells by primary colonic epithelial cells in normal and diseased states. Gastroenterology. 2000;119(6):1548–59.CrossRefPubMed
22.
Zurück zum Zitat Kersting S, Bruewer M, Schuermann G, Klotz A, Utech M, Hansmerten M, et al. Antigen transport and cytoskeletal characteristics of a distinct enterocyte population in inflammatory bowel diseases. Am J Pathol. 2004;165(2):425–37.CrossRefPubMedPubMedCentral Kersting S, Bruewer M, Schuermann G, Klotz A, Utech M, Hansmerten M, et al. Antigen transport and cytoskeletal characteristics of a distinct enterocyte population in inflammatory bowel diseases. Am J Pathol. 2004;165(2):425–37.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Buning J, Hundorfean G, Schmitz M, Zimmer KP, Strobel S, Gebert A, et al. Antigen targeting to MHC class II-enriched late endosomes in colonic epithelial cells: trafficking of luminal antigens studied in vivo in Crohn’s colitis patients. FASEB J. 2006;20(2):359–61.PubMed Buning J, Hundorfean G, Schmitz M, Zimmer KP, Strobel S, Gebert A, et al. Antigen targeting to MHC class II-enriched late endosomes in colonic epithelial cells: trafficking of luminal antigens studied in vivo in Crohn’s colitis patients. FASEB J. 2006;20(2):359–61.PubMed
24.
Zurück zum Zitat Hundorfean G, Zimmer KP, Strobel S, Gebert A, Ludwig D, Buning J. Luminal antigens access late endosomes of intestinal epithelial cells enriched in MHC, I and MHC II molecules: in vivo study in Crohn’s ileitis. Am J Physiol Gastrointest Liver Physiol. 2007;293(4):G798–808.CrossRefPubMed Hundorfean G, Zimmer KP, Strobel S, Gebert A, Ludwig D, Buning J. Luminal antigens access late endosomes of intestinal epithelial cells enriched in MHC, I and MHC II molecules: in vivo study in Crohn’s ileitis. Am J Physiol Gastrointest Liver Physiol. 2007;293(4):G798–808.CrossRefPubMed
25.
26.
Zurück zum Zitat Zimmer KP, Poremba C, Weber P, Ciclitira PJ, Harms E. Translocation of gliadin into HLA-DR antigen containing lysosomes in coeliac disease enterocytes. Gut. 1995;36(5):703–9.CrossRefPubMedPubMedCentral Zimmer KP, Poremba C, Weber P, Ciclitira PJ, Harms E. Translocation of gliadin into HLA-DR antigen containing lysosomes in coeliac disease enterocytes. Gut. 1995;36(5):703–9.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Zimmer KP, Naim H, Weber P, Ellis HJ, Ciclitira PJ. Targeting of gliadin peptides, CD8, alpha/beta-TCR, and gamma/delta-TCR to Golgi complexes and vacuoles within celiac disease enterocytes. FASEB J. 1998;12(13):1349–57.PubMed Zimmer KP, Naim H, Weber P, Ellis HJ, Ciclitira PJ. Targeting of gliadin peptides, CD8, alpha/beta-TCR, and gamma/delta-TCR to Golgi complexes and vacuoles within celiac disease enterocytes. FASEB J. 1998;12(13):1349–57.PubMed
28.
Zurück zum Zitat Zimmer KP, Fischer I, Mothes T, Weissen-Plenz G, Schmitz M, Wieser H, et al. Endocytotic segregation of gliadin peptide 31–49 in enterocytes. Gut. 2010;59(3):300–10.CrossRefPubMed Zimmer KP, Fischer I, Mothes T, Weissen-Plenz G, Schmitz M, Wieser H, et al. Endocytotic segregation of gliadin peptide 31–49 in enterocytes. Gut. 2010;59(3):300–10.CrossRefPubMed
29.
Zurück zum Zitat Lubbing N, Barone MV, Rudloff S, Troncone R, Auricchio S, Zimmer KP. Correction of gliadin transport within enterocytes through celiac disease serum. Pediatr Res. 2011;70(4):357–62.CrossRefPubMed Lubbing N, Barone MV, Rudloff S, Troncone R, Auricchio S, Zimmer KP. Correction of gliadin transport within enterocytes through celiac disease serum. Pediatr Res. 2011;70(4):357–62.CrossRefPubMed
30.
Zurück zum Zitat Barone MV, Nanayakkara M, Paolella G, Maglio M, Vitale V, Troiano R, et al. Gliadin peptide P31-43 localises to endocytic vesicles and interferes with their maturation. PLoS One. 2010;5(8):e12246.CrossRefPubMedPubMedCentral Barone MV, Nanayakkara M, Paolella G, Maglio M, Vitale V, Troiano R, et al. Gliadin peptide P31-43 localises to endocytic vesicles and interferes with their maturation. PLoS One. 2010;5(8):e12246.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Reinke Y, Behrendt M, Schmidt S, Zimmer KP, Naim HY. Impairment of protein trafficking by direct interaction of gliadin peptides with actin. Exp Cell Res. 2011;317(15):2124–35.CrossRefPubMed Reinke Y, Behrendt M, Schmidt S, Zimmer KP, Naim HY. Impairment of protein trafficking by direct interaction of gliadin peptides with actin. Exp Cell Res. 2011;317(15):2124–35.CrossRefPubMed
32.
Zurück zum Zitat Reinke Y, Zimmer KP, Naim HY, Toxic peptides in Frazer’s fraction interact with the actin cytoskeleton and affect the targeting and function of intestinal proteins. Exp Cell Res. 2009;315(19):3442–52.CrossRefPubMed Reinke Y, Zimmer KP, Naim HY, Toxic peptides in Frazer’s fraction interact with the actin cytoskeleton and affect the targeting and function of intestinal proteins. Exp Cell Res. 2009;315(19):3442–52.CrossRefPubMed
33.
Zurück zum Zitat Zimmermann C, Rudloff S, Lochnit G, Arampatzi S, Maison W, Zimmer KP. Epithelial transport of immunogenic and toxic gliadin peptides in vitro. PLoS One. 2014;9(11):e113932.CrossRefPubMedPubMedCentral Zimmermann C, Rudloff S, Lochnit G, Arampatzi S, Maison W, Zimmer KP. Epithelial transport of immunogenic and toxic gliadin peptides in vitro. PLoS One. 2014;9(11):e113932.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Matysiak-Budnik T, Candalh C, Dugave C, Namane A, Cellier C, Cerf-Bensussan N, et al. Alterations of the intestinal transport and processing of gliadin peptides in celiac disease. Gastroenterology. 2003;125(3):696–707.CrossRefPubMed Matysiak-Budnik T, Candalh C, Dugave C, Namane A, Cellier C, Cerf-Bensussan N, et al. Alterations of the intestinal transport and processing of gliadin peptides in celiac disease. Gastroenterology. 2003;125(3):696–707.CrossRefPubMed
35.
36.
Zurück zum Zitat Muller T, Hess MW, Schiefermeier N, Pfaller K, Ebner HL, Heinz-Erian P, et al. MYO5B mutations cause microvillus inclusion disease and disrupt epithelial cell polarity. Nat Genet. 2008;40(10):1163–5.CrossRefPubMed Muller T, Hess MW, Schiefermeier N, Pfaller K, Ebner HL, Heinz-Erian P, et al. MYO5B mutations cause microvillus inclusion disease and disrupt epithelial cell polarity. Nat Genet. 2008;40(10):1163–5.CrossRefPubMed
37.
Zurück zum Zitat Wiegerinck CL, Janecke AR, Schneeberger K, Vogel GF, Haaften-Visser DY van, Escher JC, et al. Loss of syntaxin 3 causes variant microvillus inclusion disease. Gastroenterology. 2014;147(1):65–8 e10.CrossRefPubMed Wiegerinck CL, Janecke AR, Schneeberger K, Vogel GF, Haaften-Visser DY van, Escher JC, et al. Loss of syntaxin 3 causes variant microvillus inclusion disease. Gastroenterology. 2014;147(1):65–8 e10.CrossRefPubMed
38.
Zurück zum Zitat Knowles BC, Roland JT, Krishnan M, Tyska MJ, Lapierre LA, Dickman PS, et al. Myosin Vb uncoupling from RAB8A and RAB11A elicits microvillus inclusion disease. J Clin Invest. 2014;124(7):2947–62.CrossRefPubMedPubMedCentral Knowles BC, Roland JT, Krishnan M, Tyska MJ, Lapierre LA, Dickman PS, et al. Myosin Vb uncoupling from RAB8A and RAB11A elicits microvillus inclusion disease. J Clin Invest. 2014;124(7):2947–62.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Chauhan S, Ahmed Z, Bradfute SB, Arko-Mensah J, Mandell MA, Won Choi S, et al. Pharmaceutical screen identifies novel target processes for activation of autophagy with a broad translational potential. Nat Comm. 2015;6:8620.CrossRef Chauhan S, Ahmed Z, Bradfute SB, Arko-Mensah J, Mandell MA, Won Choi S, et al. Pharmaceutical screen identifies novel target processes for activation of autophagy with a broad translational potential. Nat Comm. 2015;6:8620.CrossRef
41.
Zurück zum Zitat Zimmer KP, Branski D. Rare Inborn Defects Causing Malabsorption. In: Kliegman RM, Stanton BF, St Geme JW, Schor NF, Behrman RE, editors. Nelson textbook of pediatrics. 20 ed. Philadelphia: Elsevier; 2016. p. 1847–8. Zimmer KP, Branski D. Rare Inborn Defects Causing Malabsorption. In: Kliegman RM, Stanton BF, St Geme JW, Schor NF, Behrman RE, editors. Nelson textbook of pediatrics. 20 ed. Philadelphia: Elsevier; 2016. p. 1847–8.
Metadaten
Titel
Endocytosis in enterocytes
verfasst von
Univ.-Prof. Dr. Klaus-Peter Zimmer
Jan de Laffolie
Maria Vittoria Barone
Hassan Y. Naim
Publikationsdatum
01.05.2016
Verlag
Springer Vienna
Erschienen in
Wiener Medizinische Wochenschrift / Ausgabe 7-8/2016
Print ISSN: 0043-5341
Elektronische ISSN: 1563-258X
DOI
https://doi.org/10.1007/s10354-016-0448-z

Weitere Artikel der Ausgabe 7-8/2016

Wiener Medizinische Wochenschrift 7-8/2016 Zur Ausgabe