Skip to main content
Erschienen in: Spektrum der Augenheilkunde 1/2016

01.02.2016 | original article

Corneal epithelial thickness measured by Fourier-domain optical coherence tomography

verfasst von: Dr. Ting Wang, MD, PhD, Fengjie Li, MD, Shuting Wang, MD, Weiyun Shi, MD, PhD

Erschienen in: Spektrum der Augenheilkunde | Ausgabe 1/2016

Einloggen, um Zugang zu erhalten

Summary

Purpose

To characterize the corneal epithelial thickness profile with Fourier-domain optical coherence tomography (FD-OCT).

Methods

Epithelial thickness measurements were obtained by FD-OCT within the central 6-mm zone of the cornea in all subjects who were divided into groups of A (0–20 years), B (21–40 years), C (41–60 years), and D (> 60 years) according to age. Profile maps of the central, average, minimum, maximum, standard deviation, every ring, and radiate area of corneal epithelial thickness were plotted. Differences of the epithelial thickness values at the central cornea and peripheral locations were calculated.

Results

The mean epithelial thickness was 54.48 ± 3.11 μm at the central cornea, 53.53 ± 3.06 μm at the 2–5 mm annular area, and 52.45 ± 3.13 μm at the 5–6 mm annular area, with no statistically significant differences between left and right eyes and between both genders. From the center to the edge, the corneal epithelial thickness became thinner obviously for all groups (p  = 0.000), and in the 5–6 mm zone, the epithelial thickness was inversely associated with age (p  = 0.000). The average epithelial thickness map showed that the corneal epithelium was 1.54 μm thicker inferiorly than superiorly (p = 0.000). The thinnest part was on the superior temporal region (52.49 ± 3.48 μm, 50.78 ± 3.68 μm), while the thickest was on the inferior nasal (54.56 ± 3.44 μm, 53.68 ± 3.72 μm).

Conclusions

Corneal epithelial thickness unevenly distributes, with the thinnest part on the superior temporal region and the thickest on the inferior nasal region. The 5–6 mm annular area corneal epithelium becomes thinned with aging, while the central corneal epithelial thickness has no obvious change.
Literatur
1.
Zurück zum Zitat Li Y, Tan O, Brass R, Weiss JL, Huang D. Corneal epithelial thickness mapping by Fourier-domain optical coherence tomography in normal and keratoconic Eyes. Ophthalmology. 2012;119:2425–33.PubMedCentralCrossRefPubMed Li Y, Tan O, Brass R, Weiss JL, Huang D. Corneal epithelial thickness mapping by Fourier-domain optical coherence tomography in normal and keratoconic Eyes. Ophthalmology. 2012;119:2425–33.PubMedCentralCrossRefPubMed
2.
Zurück zum Zitat Reinstein DZ, Silverman RH, Raevsky T, Simoni GJ, Lloyd HO, Najafi DJ, Rondeau MJ, Coleman DJ. Arc-scanning very high-frequency digital ultrasound for 3D pachymetric mapping of the corneal epithelium and stroma in laser in situ keratomileusis. J Refract Surg. 2000;16:414–30.PubMed Reinstein DZ, Silverman RH, Raevsky T, Simoni GJ, Lloyd HO, Najafi DJ, Rondeau MJ, Coleman DJ. Arc-scanning very high-frequency digital ultrasound for 3D pachymetric mapping of the corneal epithelium and stroma in laser in situ keratomileusis. J Refract Surg. 2000;16:414–30.PubMed
3.
Zurück zum Zitat Patel S, Marshall J, Fitzke FW. Refractive index of the human corneal epithelium and stroma. J Refract Surg. 1995;11:100–5.PubMed Patel S, Marshall J, Fitzke FW. Refractive index of the human corneal epithelium and stroma. J Refract Surg. 1995;11:100–5.PubMed
4.
Zurück zum Zitat Yang Y, Hong J, Deng SX, Xu J. Age-related changes in human corneal epithelial thickness measured with anterior segment optical coherence tomography. Invest Ophthalmol Vis Sci. 2014;55:5032–8.CrossRefPubMed Yang Y, Hong J, Deng SX, Xu J. Age-related changes in human corneal epithelial thickness measured with anterior segment optical coherence tomography. Invest Ophthalmol Vis Sci. 2014;55:5032–8.CrossRefPubMed
5.
Zurück zum Zitat Radford SW, Lim R, Salmon JF. Comparison of Orbscan and ultrasound pachymetry in the measurement of central corneal thickness. Eye. 2004;18:434–6.CrossRefPubMed Radford SW, Lim R, Salmon JF. Comparison of Orbscan and ultrasound pachymetry in the measurement of central corneal thickness. Eye. 2004;18:434–6.CrossRefPubMed
6.
Zurück zum Zitat Rainer G, Findl O, Petternel V, Kiss B, Drexler W, Skorpik C, Georgopoulos M, Schmetterer L. Central corneal thickness measurements with partial coherence interferometry, ultrasound, and the Orbscan system. Ophthalmology. 2004;111:875–9.CrossRefPubMed Rainer G, Findl O, Petternel V, Kiss B, Drexler W, Skorpik C, Georgopoulos M, Schmetterer L. Central corneal thickness measurements with partial coherence interferometry, ultrasound, and the Orbscan system. Ophthalmology. 2004;111:875–9.CrossRefPubMed
7.
Zurück zum Zitat Kawana K, Tokunaga T, Miyata K, Okamoto F, Kiuchi T, Oshika T. Comparison of corneal thickness measurements using Orbscan II, non-contact specular microscopy, and ultrasonic pachymetry in eyes after laser in situ keratomileusis. Br J Ophthalmol. 2004;88:466–8.PubMedCentralCrossRefPubMed Kawana K, Tokunaga T, Miyata K, Okamoto F, Kiuchi T, Oshika T. Comparison of corneal thickness measurements using Orbscan II, non-contact specular microscopy, and ultrasonic pachymetry in eyes after laser in situ keratomileusis. Br J Ophthalmol. 2004;88:466–8.PubMedCentralCrossRefPubMed
8.
Zurück zum Zitat Realini T, Lovelace K. Measuring central corneal thickness with ultrasound pachymetry. Optom Vis Sci. 2003;80:437–9.CrossRefPubMed Realini T, Lovelace K. Measuring central corneal thickness with ultrasound pachymetry. Optom Vis Sci. 2003;80:437–9.CrossRefPubMed
9.
Zurück zum Zitat Tam ES, Rootman DS. Comparison of central corneal thickness measurements by specular microscopy, ultrasound pachymetry, and ultrasound biomicroscopy. J Cataract Refract Surg. 2003;29:1179–84.CrossRefPubMed Tam ES, Rootman DS. Comparison of central corneal thickness measurements by specular microscopy, ultrasound pachymetry, and ultrasound biomicroscopy. J Cataract Refract Surg. 2003;29:1179–84.CrossRefPubMed
10.
Zurück zum Zitat Bechmann M, Thiel MJ, Neubauer AS, Ullrich S, Ludwig K, Kenyon KR, Ulbig MW. Central corneal thickness measurement with a retinal optical coherence tomography device versus standard ultrasonic pachymetry. Cornea. 2001;20:50–4.CrossRefPubMed Bechmann M, Thiel MJ, Neubauer AS, Ullrich S, Ludwig K, Kenyon KR, Ulbig MW. Central corneal thickness measurement with a retinal optical coherence tomography device versus standard ultrasonic pachymetry. Cornea. 2001;20:50–4.CrossRefPubMed
11.
Zurück zum Zitat Perez JG, Meijome JM, Jalbert I, Sweeney DF, Erickson P. Corneal epithelial thinning profile induced by long-term wear of hydrogel lenses. Cornea. 2003;22:304–7.CrossRefPubMed Perez JG, Meijome JM, Jalbert I, Sweeney DF, Erickson P. Corneal epithelial thinning profile induced by long-term wear of hydrogel lenses. Cornea. 2003;22:304–7.CrossRefPubMed
12.
Zurück zum Zitat Ivarsen A, Laurberg T, Moller-Pedersen T. Characterisation of corneal fibrotic wound repair at the LASIK flap margin. Br J Ophthalmol. 2003;87:1272–8.PubMedCentralCrossRefPubMed Ivarsen A, Laurberg T, Moller-Pedersen T. Characterisation of corneal fibrotic wound repair at the LASIK flap margin. Br J Ophthalmol. 2003;87:1272–8.PubMedCentralCrossRefPubMed
13.
Zurück zum Zitat Sin S, Simpson TL. The repeatability of corneal and corneal epithelial thickness measurements using optical coherence tomography. Optom Vis Sci. 2006;83:360–5.CrossRefPubMed Sin S, Simpson TL. The repeatability of corneal and corneal epithelial thickness measurements using optical coherence tomography. Optom Vis Sci. 2006;83:360–5.CrossRefPubMed
14.
Zurück zum Zitat Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotie T, Gregory K, Puliafito CA, Fujimoto JG. Optical coherence tomography. Science. 1991;254:1178–81.PubMedCentralCrossRefPubMed Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotie T, Gregory K, Puliafito CA, Fujimoto JG. Optical coherence tomography. Science. 1991;254:1178–81.PubMedCentralCrossRefPubMed
15.
Zurück zum Zitat Huang D, Tang M, Shekhar R. Mathematical model of corneal surface smoothing after laser refractive surgery. Am J Ophthalmol. 2003;135:267–78.CrossRefPubMed Huang D, Tang M, Shekhar R. Mathematical model of corneal surface smoothing after laser refractive surgery. Am J Ophthalmol. 2003;135:267–78.CrossRefPubMed
16.
Zurück zum Zitat Reinstein DZ, Gobbe M, Archer TJ, Silverman RH, Coleman DJ. Epithelial, stromal, and total corneal thickness in keratoconus: three-dimensional display with Artemis very-high frequency digital ultrasound. J Refract Surg. 2010;26:259–71.PubMedCentralCrossRefPubMed Reinstein DZ, Gobbe M, Archer TJ, Silverman RH, Coleman DJ. Epithelial, stromal, and total corneal thickness in keratoconus: three-dimensional display with Artemis very-high frequency digital ultrasound. J Refract Surg. 2010;26:259–71.PubMedCentralCrossRefPubMed
17.
Zurück zum Zitat Ucakhan OO, Ozkan M, Kanpolat A. Corneal thickness measurements in normal and keratoconic eyes: pentacam comprehensive eye scanner versus noncontact specular microscopy and ultrasound pachymetry. J Cataract Refract Surg. 2006;32:970–7.CrossRefPubMed Ucakhan OO, Ozkan M, Kanpolat A. Corneal thickness measurements in normal and keratoconic eyes: pentacam comprehensive eye scanner versus noncontact specular microscopy and ultrasound pachymetry. J Cataract Refract Surg. 2006;32:970–7.CrossRefPubMed
18.
Zurück zum Zitat Ishibazawa A, Igarashi S, Hanada K, Nagaoka T, Ishiko S, Ito H, Yoshida A. Central corneal thickness measurements with Fourier-domain optical coherence tomography versus ultrasonic pachymetry and rotating Scheimpflug camera. Cornea. 2011;30:615–9.CrossRefPubMed Ishibazawa A, Igarashi S, Hanada K, Nagaoka T, Ishiko S, Ito H, Yoshida A. Central corneal thickness measurements with Fourier-domain optical coherence tomography versus ultrasonic pachymetry and rotating Scheimpflug camera. Cornea. 2011;30:615–9.CrossRefPubMed
19.
Zurück zum Zitat Li HF, Petroll WM, Moller-Pedersen T, Maurer JK, Cavanagh HD, Jester JV. Epithelial and corneal thickness measurements by in vivo confocal microscopy through focusing (CMTF). Curr Eye Res. 1997;16:214–21.CrossRefPubMed Li HF, Petroll WM, Moller-Pedersen T, Maurer JK, Cavanagh HD, Jester JV. Epithelial and corneal thickness measurements by in vivo confocal microscopy through focusing (CMTF). Curr Eye Res. 1997;16:214–21.CrossRefPubMed
20.
Zurück zum Zitat Reinstein DZ, Silverman RH, Trokel SL, Cole-man DJ. Corneal pachymetric topography. Ophthalmology. 1994;101:432–8.CrossRefPubMed Reinstein DZ, Silverman RH, Trokel SL, Cole-man DJ. Corneal pachymetric topography. Ophthalmology. 1994;101:432–8.CrossRefPubMed
21.
Zurück zum Zitat Gauthier CA, Epstein D, Holden BA, Tengroth B, Fagerholm P, Hamberg-Nystrom H, Sievert R. Epithelial alterations following photorefractive keratectomy for myopia. J Refract Surg. 1995;11:113–8.PubMed Gauthier CA, Epstein D, Holden BA, Tengroth B, Fagerholm P, Hamberg-Nystrom H, Sievert R. Epithelial alterations following photorefractive keratectomy for myopia. J Refract Surg. 1995;11:113–8.PubMed
22.
Zurück zum Zitat Erie JC, Patel SV, McLaren JW, Ranirez M, Hodge DO, Maguire LJ, Bourne WM. Effect of myopic laser in situ keratomileusis on epithelial and stromal thickness: a confocal microscopy study. Ophthalmology. 2002;109:1447–52.CrossRefPubMed Erie JC, Patel SV, McLaren JW, Ranirez M, Hodge DO, Maguire LJ, Bourne WM. Effect of myopic laser in situ keratomileusis on epithelial and stromal thickness: a confocal microscopy study. Ophthalmology. 2002;109:1447–52.CrossRefPubMed
23.
Zurück zum Zitat Patel SV, Erie JC, McLaren JW, Bourne WM. Confocal microscopy changes in epithelial and stromal thickness up to 7 years after LASIK and photo refractive keratectomy for myopia. J Refract Surg. 2007;23:385–92.PubMed Patel SV, Erie JC, McLaren JW, Bourne WM. Confocal microscopy changes in epithelial and stromal thickness up to 7 years after LASIK and photo refractive keratectomy for myopia. J Refract Surg. 2007;23:385–92.PubMed
24.
Zurück zum Zitat Sin S, Simpson TL. The repeatability of corneal and corneal epithelial thickness measurements using optical coherence tomography. Optom Vis Sci. 2006;83:360–5.CrossRefPubMed Sin S, Simpson TL. The repeatability of corneal and corneal epithelial thickness measurements using optical coherence tomography. Optom Vis Sci. 2006;83:360–5.CrossRefPubMed
25.
Zurück zum Zitat Haque S, Simpson T, Jones L. Corneal and epithelial thickness in keratoconus: a comparison of ultrasonic pachymetry, Orbscan II, and optical coherence tomography. J Refract Surg. 2006;22:486–93.PubMed Haque S, Simpson T, Jones L. Corneal and epithelial thickness in keratoconus: a comparison of ultrasonic pachymetry, Orbscan II, and optical coherence tomography. J Refract Surg. 2006;22:486–93.PubMed
26.
Zurück zum Zitat Feng Y, Simpson TL. Corneal, limbal, and conjunctival epithelial thickness from optical coherence tomography. Optom Vis Sci. 2008;85:880–3.CrossRef Feng Y, Simpson TL. Corneal, limbal, and conjunctival epithelial thickness from optical coherence tomography. Optom Vis Sci. 2008;85:880–3.CrossRef
27.
Zurück zum Zitat Du CX, Wang JH, Cui LL, Shen MX, Yuan YM. Vertical and horizontal corneal epithelial thickness profiles determined by ultra-high resolution optical coherence tomography. Cornea. 2012;31:1036–43.PubMedCentralCrossRefPubMed Du CX, Wang JH, Cui LL, Shen MX, Yuan YM. Vertical and horizontal corneal epithelial thickness profiles determined by ultra-high resolution optical coherence tomography. Cornea. 2012;31:1036–43.PubMedCentralCrossRefPubMed
28.
Zurück zum Zitat Reinstein DZ, Archer TJ, Gobbe M, Silverman RH, Coleman DJ. Epithelial thickness in the normal cornea: three-dimensional display with Artemis very high-frequency digital ultrasound. J Refract Surg. 2008;24:571–81.PubMedCentralPubMed Reinstein DZ, Archer TJ, Gobbe M, Silverman RH, Coleman DJ. Epithelial thickness in the normal cornea: three-dimensional display with Artemis very high-frequency digital ultrasound. J Refract Surg. 2008;24:571–81.PubMedCentralPubMed
29.
Zurück zum Zitat Mort RL, Douvaras P, Morley SD, Dora N, Hill RE, Collinson JM, West JD. Stem cells and corneal epithelial maintenance: insights from the mouse and other animal models. Results Probl Cell Differ. 2012;55:357–94.PubMedCentralCrossRefPubMed Mort RL, Douvaras P, Morley SD, Dora N, Hill RE, Collinson JM, West JD. Stem cells and corneal epithelial maintenance: insights from the mouse and other animal models. Results Probl Cell Differ. 2012;55:357–94.PubMedCentralCrossRefPubMed
30.
Zurück zum Zitat Haque S, Jones L, Simpson T. Thickness mapping of the cornea and epithelium using optical coherence tomography. Optom Vis Sci. 2008;85:963–76.CrossRef Haque S, Jones L, Simpson T. Thickness mapping of the cornea and epithelium using optical coherence tomography. Optom Vis Sci. 2008;85:963–76.CrossRef
31.
Zurück zum Zitat Xu B, Fan TJ, Zhao J, Sun A, Wang RX, Hu XZ, Yu HZ, Fan XY, Xu XH. Transplantation of tissue-engineered human corneal epithelium in limbal stem cell deficiency rabbit models. Int J Ophthalmol. 2012;5:424–9.PubMedCentralPubMed Xu B, Fan TJ, Zhao J, Sun A, Wang RX, Hu XZ, Yu HZ, Fan XY, Xu XH. Transplantation of tissue-engineered human corneal epithelium in limbal stem cell deficiency rabbit models. Int J Ophthalmol. 2012;5:424–9.PubMedCentralPubMed
Metadaten
Titel
Corneal epithelial thickness measured by Fourier-domain optical coherence tomography
verfasst von
Dr. Ting Wang, MD, PhD
Fengjie Li, MD
Shuting Wang, MD
Weiyun Shi, MD, PhD
Publikationsdatum
01.02.2016
Verlag
Springer Vienna
Erschienen in
Spektrum der Augenheilkunde / Ausgabe 1/2016
Print ISSN: 0930-4282
Elektronische ISSN: 1613-7523
DOI
https://doi.org/10.1007/s00717-015-0267-4

Weitere Artikel der Ausgabe 1/2016

Spektrum der Augenheilkunde 1/2016 Zur Ausgabe

editorial

Editorial