Skip to main content
Erschienen in: Wiener Medizinische Wochenschrift 19-20/2015

01.10.2015 | review

Smoking, inflammation and small cell lung cancer: recent developments

verfasst von: Gerhard Hamilton, Barbara Rath

Erschienen in: Wiener Medizinische Wochenschrift | Ausgabe 19-20/2015

Einloggen, um Zugang zu erhalten

Summary

Small cell lung cancer (SCLC) accounts for 15 % of all lung tumors and represents an invasive neuroendocrine malignancy with poor survival rates. This cancer is highly prevalent in smokers and characterized by inactivation of p53 and retinoblastoma. First in vitro expansion of circulating tumor cells (CTCs) of SCLC patients allowed for investigation of the cell biology of tumor dissemination. In the suggested CTC SCLC model, the primary tumor attracts and educates tumor-promoting and immunosuppressive macrophages which in turn arm CTCs to spread and generate distal lesions. Preexisting inflammatory processes associated with chronic obstructive pulmonary disease (COPD) seem to potentiate the subsequent activity of tumor-associated macrophages (TAM). Activation of signal transducer and activator of transcription 3 (STAT3) and expression of chitinase-3-like 1/YKL-40 in SCLC CTCs seems to be associated with drug resistance. In conclusion, inflammation-associated generation of invasive and chemoresistant CTCs most likely explains the characteristic features of SCLC, namely early dissemination and rapid failure of chemotherapy.
Literatur
1.
Zurück zum Zitat Byers LA, Rudin CM. Small cell lung cancer: where do we go from here? Cancer. 2015;121(5):664–72. doi:10.1002/cncr.29098.CrossRefPubMed Byers LA, Rudin CM. Small cell lung cancer: where do we go from here? Cancer. 2015;121(5):664–72. doi:10.1002/cncr.29098.CrossRefPubMed
2.
Zurück zum Zitat Pietanza MC, Byers LA, Minna JD, et al. Small cell lung cancer: will recent progress lead to improved outcomes? Clin Cancer Res. 2015;21(10):2244–55. doi:10.1158/1078 – 0432.CCR-14-2958.CrossRefPubMed Pietanza MC, Byers LA, Minna JD, et al. Small cell lung cancer: will recent progress lead to improved outcomes? Clin Cancer Res. 2015;21(10):2244–55. doi:10.1158/1078 – 0432.CCR-14-2958.CrossRefPubMed
3.
Zurück zum Zitat Jiménez Ruiz CA, Ramos Pinedo A, Cicero Guerrero A, et al. Characteristics of COPD smokers and effectiveness and safety of smoking cessation medications. Nicotine Tob Res. 2012;14(9):1035–9. doi:10.1093/ntr/nts001.CrossRefPubMed Jiménez Ruiz CA, Ramos Pinedo A, Cicero Guerrero A, et al. Characteristics of COPD smokers and effectiveness and safety of smoking cessation medications. Nicotine Tob Res. 2012;14(9):1035–9. doi:10.1093/ntr/nts001.CrossRefPubMed
4.
Zurück zum Zitat Pleasance ED, Stephens PJ, O’Meara S, et al. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature. 2010;463(7278):184–90. doi:10.1038/nature08629.PubMedCentralCrossRefPubMed Pleasance ED, Stephens PJ, O’Meara S, et al. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature. 2010;463(7278):184–90. doi:10.1038/nature08629.PubMedCentralCrossRefPubMed
5.
6.
Zurück zum Zitat Coleman MP, Allemani C. Cancer: the elephant in the room. Lancet. 2015;385(9973):1047–8. doi:10.1016/S0140-6736(15)60571-2.CrossRefPubMed Coleman MP, Allemani C. Cancer: the elephant in the room. Lancet. 2015;385(9973):1047–8. doi:10.1016/S0140-6736(15)60571-2.CrossRefPubMed
7.
Zurück zum Zitat Galluzzi L, Vitale I, Michels J, et al. Systems biology of cisplatin resistance: past, present and future. Cell Death Dis. 2014;5:e1257. doi:10.1038/cddis.2013.428.PubMedCentralCrossRefPubMed Galluzzi L, Vitale I, Michels J, et al. Systems biology of cisplatin resistance: past, present and future. Cell Death Dis. 2014;5:e1257. doi:10.1038/cddis.2013.428.PubMedCentralCrossRefPubMed
8.
Zurück zum Zitat Asai N, Ohkuni Y, Kaneko N, et al. Relapsed small cell lung cancer: treatment options and latest developments. Ther Adv Med Oncol. 2014;6(2):69–82. doi:10.1177/1758834013517413.PubMedCentralCrossRefPubMed Asai N, Ohkuni Y, Kaneko N, et al. Relapsed small cell lung cancer: treatment options and latest developments. Ther Adv Med Oncol. 2014;6(2):69–82. doi:10.1177/1758834013517413.PubMedCentralCrossRefPubMed
9.
Zurück zum Zitat Chan BA, Hughes BG. Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Transl Lung Cancer Res. 2015;4(1):36–54. doi:10.3978/j.issn.2218–6751.2014.05.01.PubMedCentralPubMed Chan BA, Hughes BG. Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Transl Lung Cancer Res. 2015;4(1):36–54. doi:10.3978/j.issn.2218–6751.2014.05.01.PubMedCentralPubMed
10.
Zurück zum Zitat Rudin CM, Durinck S, Stawiski EW, et al. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat Genet. 2012;44(10):1111–6. doi:10.1038/ng.2405.PubMedCentralCrossRefPubMed Rudin CM, Durinck S, Stawiski EW, et al. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat Genet. 2012;44(10):1111–6. doi:10.1038/ng.2405.PubMedCentralCrossRefPubMed
11.
Zurück zum Zitat Pfeifer GP, Denissenko MF, Olivier M, et al. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene. 2002;21(48):7435–51.CrossRefPubMed Pfeifer GP, Denissenko MF, Olivier M, et al. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene. 2002;21(48):7435–51.CrossRefPubMed
12.
Zurück zum Zitat Pietanza MC, Ladanyi M. Bringing the genomic landscape of small-cell lung cancer into focus. Nat Genet. 2012;44(10):1074–5. doi:10.1038/ng.2415.CrossRefPubMed Pietanza MC, Ladanyi M. Bringing the genomic landscape of small-cell lung cancer into focus. Nat Genet. 2012;44(10):1074–5. doi:10.1038/ng.2415.CrossRefPubMed
13.
Zurück zum Zitat Ross JS, Wang K, Elkadi OR, et al. Next-generation sequencing reveals frequent consistent genomic alterations in small cell undifferentiated lung cancer. J Clin Pathol. 2014;67(9):772–6.PubMedCentralCrossRefPubMed Ross JS, Wang K, Elkadi OR, et al. Next-generation sequencing reveals frequent consistent genomic alterations in small cell undifferentiated lung cancer. J Clin Pathol. 2014;67(9):772–6.PubMedCentralCrossRefPubMed
14.
Zurück zum Zitat Rolfo C, Castiglia M, Hong D, et al. Liquid biopsies in lung cancer: the new ambrosia of researchers. Biochim Biophys Acta. 2014;1846(2):539–46. doi:10.1016/j.bbcan.2014.10.001.PubMed Rolfo C, Castiglia M, Hong D, et al. Liquid biopsies in lung cancer: the new ambrosia of researchers. Biochim Biophys Acta. 2014;1846(2):539–46. doi:10.1016/j.bbcan.2014.10.001.PubMed
15.
Zurück zum Zitat Hamilton G, Burghuber O, Zeillinger R. Circulating tumor cells in small cell lung cancer: ex vivo expansion. Lung. 2015;193(3):451–2. doi:10.1007/s00408-015-9725-7.CrossRefPubMed Hamilton G, Burghuber O, Zeillinger R. Circulating tumor cells in small cell lung cancer: ex vivo expansion. Lung. 2015;193(3):451–2. doi:10.1007/s00408-015-9725-7.CrossRefPubMed
16.
17.
Zurück zum Zitat Hoffmann D, Hoffmann I, El-Bayoumy K. The less harmful cigarette: a controversial issue. A tribute to Ernst L. Wynder. Chem Res Toxicol. 2001;14(7):767–90.CrossRefPubMed Hoffmann D, Hoffmann I, El-Bayoumy K. The less harmful cigarette: a controversial issue. A tribute to Ernst L. Wynder. Chem Res Toxicol. 2001;14(7):767–90.CrossRefPubMed
18.
Zurück zum Zitat Govindan R, Ding L, Griffith M, et al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell. 2012;150(6):1121–34. doi:10.1016/j.cell.2012.08.024.PubMedCentralCrossRefPubMed Govindan R, Ding L, Griffith M, et al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell. 2012;150(6):1121–34. doi:10.1016/j.cell.2012.08.024.PubMedCentralCrossRefPubMed
20.
Zurück zum Zitat Lubin JH, Alavanja MC, Caporaso N, et al. Cigarette smoking and cancer risk: modeling total exposure and intensity. Am J Epidemiol. 2007;166(4):479–89.CrossRefPubMed Lubin JH, Alavanja MC, Caporaso N, et al. Cigarette smoking and cancer risk: modeling total exposure and intensity. Am J Epidemiol. 2007;166(4):479–89.CrossRefPubMed
21.
Zurück zum Zitat Muttarak R, Steiber N, Gallus S. Smoking ban in Austria: a long overdue step but still a lot to be done. Lancet. 2015;385(9972):941–2.CrossRefPubMed Muttarak R, Steiber N, Gallus S. Smoking ban in Austria: a long overdue step but still a lot to be done. Lancet. 2015;385(9972):941–2.CrossRefPubMed
22.
Zurück zum Zitat Travis WD. Pathology and diagnosis of neuroendocrine tumors: lung neuroendocrine. Thorac Surg Clin. 2014;24(3):257–66. doi:10.1016/j.thorsurg.2014.04.001.CrossRefPubMed Travis WD. Pathology and diagnosis of neuroendocrine tumors: lung neuroendocrine. Thorac Surg Clin. 2014;24(3):257–66. doi:10.1016/j.thorsurg.2014.04.001.CrossRefPubMed
23.
Zurück zum Zitat Hensing T, Chawla A, Batra R, et al. A personalized treatment for lung cancer: molecular pathways, targeted therapies, and genomic characterization. Adv Exp Med Biol. 2014;799:85–117. doi:10.1007/978-1-4614-8778-45.CrossRefPubMed Hensing T, Chawla A, Batra R, et al. A personalized treatment for lung cancer: molecular pathways, targeted therapies, and genomic characterization. Adv Exp Med Biol. 2014;799:85–117. doi:10.1007/978-1-4614-8778-45.CrossRefPubMed
24.
Zurück zum Zitat Barnes PJ. Cellular and molecular mechanisms of chronic obstructive pulmonary disease. Clin Chest Med. 2014;35(1):71–86. doi:10.1016/j.ccm.2013.10.004.CrossRefPubMed Barnes PJ. Cellular and molecular mechanisms of chronic obstructive pulmonary disease. Clin Chest Med. 2014;35(1):71–86. doi:10.1016/j.ccm.2013.10.004.CrossRefPubMed
25.
Zurück zum Zitat Decramer M, Janssens W, Miravitlles M. Chronic obstructive pulmonary disease. Lancet. 2012;379(9823):1341–51. doi:10.1016/S0140-6736(11)60968-9.CrossRefPubMed Decramer M, Janssens W, Miravitlles M. Chronic obstructive pulmonary disease. Lancet. 2012;379(9823):1341–51. doi:10.1016/S0140-6736(11)60968-9.CrossRefPubMed
26.
Zurück zum Zitat Punturieri A, Szabo E, Croxton TL, et al. Lung cancer and chronic obstructive pulmonary disease: needs and opportunities for integrated research. J Natl Cancer Inst. 2009;101(8):554–9. doi:10.1093/jnci/djp023.PubMedCentralCrossRefPubMed Punturieri A, Szabo E, Croxton TL, et al. Lung cancer and chronic obstructive pulmonary disease: needs and opportunities for integrated research. J Natl Cancer Inst. 2009;101(8):554–9. doi:10.1093/jnci/djp023.PubMedCentralCrossRefPubMed
27.
Zurück zum Zitat Vlahos R, Bozinovski S. Role of alveolar macrophages in chronic obstructive pulmonary disease. Front Immunol. 2014;5:435. doi:10.3389/fimmu.2014.00435.PubMedCentralCrossRefPubMed Vlahos R, Bozinovski S. Role of alveolar macrophages in chronic obstructive pulmonary disease. Front Immunol. 2014;5:435. doi:10.3389/fimmu.2014.00435.PubMedCentralCrossRefPubMed
28.
Zurück zum Zitat Rovina N, Koutsoukou A, Koulouris NG. Inflammation and immune response in COPD: where do we stand? Mediators Inflamm. 2013;2013:413735. doi:10.1155/2013/413735.PubMedCentralCrossRefPubMed Rovina N, Koutsoukou A, Koulouris NG. Inflammation and immune response in COPD: where do we stand? Mediators Inflamm. 2013;2013:413735. doi:10.1155/2013/413735.PubMedCentralCrossRefPubMed
29.
Zurück zum Zitat Shaykhiev R, Krause A, Salit J, et al. Smoking-dependent reprogramming of alveolar macrophage polarization: implication for pathogenesis of chronic obstructive pulmonary disease. J Immunol. 2009;183(4):2867–83. doi:10.4049/jimmunol.0900473.PubMedCentralCrossRefPubMed Shaykhiev R, Krause A, Salit J, et al. Smoking-dependent reprogramming of alveolar macrophage polarization: implication for pathogenesis of chronic obstructive pulmonary disease. J Immunol. 2009;183(4):2867–83. doi:10.4049/jimmunol.0900473.PubMedCentralCrossRefPubMed
30.
Zurück zum Zitat Tamimi A, Serdarevic D, Hanania NA. The effects of cigarette smoke on airway inflammation in asthma and COPD: therapeutic implications. Respir Med. 2012;106(3):319–28. doi:10.1016/j.rmed.2011.11.003.CrossRefPubMed Tamimi A, Serdarevic D, Hanania NA. The effects of cigarette smoke on airway inflammation in asthma and COPD: therapeutic implications. Respir Med. 2012;106(3):319–28. doi:10.1016/j.rmed.2011.11.003.CrossRefPubMed
31.
Zurück zum Zitat Churg A, Dai J, Tai H, Xie C, et al. Tumor necrosis factor-alpha is central to acute cigarette smoke-induced inflammation and connective tissue breakdown. Am J Respir Crit Care Med. 2002;166(6):849–54.CrossRefPubMed Churg A, Dai J, Tai H, Xie C, et al. Tumor necrosis factor-alpha is central to acute cigarette smoke-induced inflammation and connective tissue breakdown. Am J Respir Crit Care Med. 2002;166(6):849–54.CrossRefPubMed
32.
Zurück zum Zitat Létuvé S, Kozhich A, Humbles A, et al. Lung chitinolytic activity and chitotriosidase are elevated in chronic obstructive pulmonary disease and contribute to lung inflammation. Am J Pathol. 2010;176(2):638–49. doi:10.2353/ajpath.2010.090455.PubMedCentralCrossRefPubMed Létuvé S, Kozhich A, Humbles A, et al. Lung chitinolytic activity and chitotriosidase are elevated in chronic obstructive pulmonary disease and contribute to lung inflammation. Am J Pathol. 2010;176(2):638–49. doi:10.2353/ajpath.2010.090455.PubMedCentralCrossRefPubMed
33.
Zurück zum Zitat Gwyer Findlay E, Hussell T. Macrophage-mediated inflammation and disease: a focus on the lung. Mediators Inflamm. 2012;2012:140937. doi:10.1155/2012/140937.PubMedCentralCrossRefPubMed Gwyer Findlay E, Hussell T. Macrophage-mediated inflammation and disease: a focus on the lung. Mediators Inflamm. 2012;2012:140937. doi:10.1155/2012/140937.PubMedCentralCrossRefPubMed
34.
Zurück zum Zitat Cho SJ, Weiden MD, Lee CG. Chitotriosidase in the pathogenesis of inflammation, interstitial lung diseases and COPD. Allergy Asthma Immunol Res. 2015;7(1):14–21. doi:10.4168/aair.2015.7.1.14.PubMedCentralCrossRefPubMed Cho SJ, Weiden MD, Lee CG. Chitotriosidase in the pathogenesis of inflammation, interstitial lung diseases and COPD. Allergy Asthma Immunol Res. 2015;7(1):14–21. doi:10.4168/aair.2015.7.1.14.PubMedCentralCrossRefPubMed
35.
Zurück zum Zitat Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357:539–45.CrossRefPubMed Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357:539–45.CrossRefPubMed
36.
Zurück zum Zitat Balkwill F, Mantovani A. Cancer and inflammation: implications for pharmacology and therapeutics. Clin Pharmacol Ther. 2010;87:401–6.CrossRefPubMed Balkwill F, Mantovani A. Cancer and inflammation: implications for pharmacology and therapeutics. Clin Pharmacol Ther. 2010;87:401–6.CrossRefPubMed
38.
Zurück zum Zitat Samadi AK, Bilsland A, Georgakilas AG. A multi-targeted approach to suppress tumor-promoting inflammation. Semin Cancer Biol. 2015. doi:10.1016/j.semcancer.2015.03.006. (pii: S1044-579×(15)00021-8) Samadi AK, Bilsland A, Georgakilas AG. A multi-targeted approach to suppress tumor-promoting inflammation. Semin Cancer Biol. 2015. doi:10.1016/j.semcancer.2015.03.006. (pii: S1044-579×(15)00021-8)
40.
Zurück zum Zitat Walser T, Cui X, Yanagawa J, Lee JM, et al. Smoking and lung cancer: the role of inflammation. Proc Am Thorac Soc. 2008;5(8):811–5. doi:10.1513/pats.200809-100TH.PubMedCentralCrossRefPubMed Walser T, Cui X, Yanagawa J, Lee JM, et al. Smoking and lung cancer: the role of inflammation. Proc Am Thorac Soc. 2008;5(8):811–5. doi:10.1513/pats.200809-100TH.PubMedCentralCrossRefPubMed
41.
Zurück zum Zitat Houghton AM, Mouded M, Shapiro SD. Common origins of lung cancer and COPD. Nat Med. 2008;14(10):1023–4. doi:10.1038/nm1008-1023.CrossRefPubMed Houghton AM, Mouded M, Shapiro SD. Common origins of lung cancer and COPD. Nat Med. 2008;14(10):1023–4. doi:10.1038/nm1008-1023.CrossRefPubMed
42.
Zurück zum Zitat Houghton AM. Mechanistic links between COPD and lung cancer. Nat Rev Cancer. 2013;13(4):233–45. doi:10.1038/nrc3477.CrossRefPubMed Houghton AM. Mechanistic links between COPD and lung cancer. Nat Rev Cancer. 2013;13(4):233–45. doi:10.1038/nrc3477.CrossRefPubMed
43.
Zurück zum Zitat Skillrud DM, Offord KP, Miller RD. Higher risk of lung cancer in chronic obstructive pulmonary disease. A prospective, matched, controlled study. Ann Intern Med. 1986;105(4):503–7.CrossRefPubMed Skillrud DM, Offord KP, Miller RD. Higher risk of lung cancer in chronic obstructive pulmonary disease. A prospective, matched, controlled study. Ann Intern Med. 1986;105(4):503–7.CrossRefPubMed
44.
Zurück zum Zitat Young RP, Hopkins RJ. How the genetics of lung cancer may overlap with COPD. Respirology. 2011;16(7):1047–55. doi:10.1111/j.1440–1843.2011.02019.x.CrossRefPubMed Young RP, Hopkins RJ. How the genetics of lung cancer may overlap with COPD. Respirology. 2011;16(7):1047–55. doi:10.1111/j.1440–1843.2011.02019.x.CrossRefPubMed
45.
Zurück zum Zitat Takiguchi Y, Sekine I, Iwasawa S, et al. Chronic obstructive pulmonary disease as a risk factor for lung cancer. World J Clin Oncol. 2014;5(4):660–6. doi:10.5306/wjco.v5.i4.660.PubMedCentralCrossRefPubMed Takiguchi Y, Sekine I, Iwasawa S, et al. Chronic obstructive pulmonary disease as a risk factor for lung cancer. World J Clin Oncol. 2014;5(4):660–6. doi:10.5306/wjco.v5.i4.660.PubMedCentralCrossRefPubMed
46.
Zurück zum Zitat Milara J, Cortijo J. Tobacco, inflammation, and respiratory tract cancer. Curr Pharm Des. 2012;18(26):3901–38.CrossRefPubMed Milara J, Cortijo J. Tobacco, inflammation, and respiratory tract cancer. Curr Pharm Des. 2012;18(26):3901–38.CrossRefPubMed
47.
Zurück zum Zitat Adcock IM, Caramori G, Barnes PJ. Chronic obstructive pulmonary disease and lung cancer: new molecular insights. Respiration. 2011;81(4):265–84. doi:10.1159/000324601.CrossRefPubMed Adcock IM, Caramori G, Barnes PJ. Chronic obstructive pulmonary disease and lung cancer: new molecular insights. Respiration. 2011;81(4):265–84. doi:10.1159/000324601.CrossRefPubMed
48.
Zurück zum Zitat Cilli A, Ozkaynak C, Onur R, et al. Lung cancer detection with low-dose spiral computed tomography in chronic obstructive pulmonary disease patients. Acta Radiol. 2007;48(4):405–11.CrossRefPubMed Cilli A, Ozkaynak C, Onur R, et al. Lung cancer detection with low-dose spiral computed tomography in chronic obstructive pulmonary disease patients. Acta Radiol. 2007;48(4):405–11.CrossRefPubMed
49.
Zurück zum Zitat Heuvers ME, Wisnivesky J, Stricker BH, et al. Generalizability of results from the National Lung Screening Trial. Eur J Epidemiol. 2012;27(9):669–72. doi:10.1007/s10654-012-9720-8.CrossRefPubMed Heuvers ME, Wisnivesky J, Stricker BH, et al. Generalizability of results from the National Lung Screening Trial. Eur J Epidemiol. 2012;27(9):669–72. doi:10.1007/s10654-012-9720-8.CrossRefPubMed
50.
Zurück zum Zitat Sekine Y, Hata A, Koh E, et al. Lung carcinogenesis from chronic obstructive pulmonary disease: characteristics of lung cancer from COPD and contribution of signal transducers and lung stem cells in the inflammatory microenvironment. Gen Thorac Cardiovasc Surg. 2014;62(7):415–21. doi:10.1007/s11748-014-0386-x.CrossRefPubMed Sekine Y, Hata A, Koh E, et al. Lung carcinogenesis from chronic obstructive pulmonary disease: characteristics of lung cancer from COPD and contribution of signal transducers and lung stem cells in the inflammatory microenvironment. Gen Thorac Cardiovasc Surg. 2014;62(7):415–21. doi:10.1007/s11748-014-0386-x.CrossRefPubMed
51.
Zurück zum Zitat Tang X, Liu D, Shishodia S, et al. NF-kappaB is frequently expressed in lung cancer and preneoplastic lesions. Cancer. 2006;107(11):2637–46.CrossRefPubMed Tang X, Liu D, Shishodia S, et al. NF-kappaB is frequently expressed in lung cancer and preneoplastic lesions. Cancer. 2006;107(11):2637–46.CrossRefPubMed
52.
Zurück zum Zitat Li Z, Guo Y, Jiang H, et al. Differential regulation of MMPs by E2F1, Sp1 and NF-kappa B controls the small cell lung cancer invasive phenotype. BMC Cancer. 2014;14:276. doi:10.1186/1471-2407-14-276.PubMedCentralCrossRefPubMed Li Z, Guo Y, Jiang H, et al. Differential regulation of MMPs by E2F1, Sp1 and NF-kappa B controls the small cell lung cancer invasive phenotype. BMC Cancer. 2014;14:276. doi:10.1186/1471-2407-14-276.PubMedCentralCrossRefPubMed
53.
Zurück zum Zitat Siveen KS, Sikka S, Surana R, et al. Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors. Biochim Biophys Acta. 2014;1845(2):136–54. doi:10.1016/j.bbcan.2013.12.005.PubMed Siveen KS, Sikka S, Surana R, et al. Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors. Biochim Biophys Acta. 2014;1845(2):136–54. doi:10.1016/j.bbcan.2013.12.005.PubMed
54.
Zurück zum Zitat Vendramini-Costa DB, Carvalho JE. Molecular link mechanisms between inflammation and cancer. Curr Pharm Des. 2012;18(26):3831–52.CrossRefPubMed Vendramini-Costa DB, Carvalho JE. Molecular link mechanisms between inflammation and cancer. Curr Pharm Des. 2012;18(26):3831–52.CrossRefPubMed
55.
Zurück zum Zitat Chen YT, Feng B, Chen LB. Update of research on drug resistance in small cell lung cancer chemotherapy. Asian Pac J Cancer Prev. 2012;13(8):3577–81.CrossRefPubMed Chen YT, Feng B, Chen LB. Update of research on drug resistance in small cell lung cancer chemotherapy. Asian Pac J Cancer Prev. 2012;13(8):3577–81.CrossRefPubMed
56.
Zurück zum Zitat López-González A, Diz P, et al. The role of anthracyclines in small cell lung cancer. Ann Transl Med. 2013;1(1):5. doi:10.3978/j.issn.2305–5839.2013.01.05.PubMedCentralPubMed López-González A, Diz P, et al. The role of anthracyclines in small cell lung cancer. Ann Transl Med. 2013;1(1):5. doi:10.3978/j.issn.2305–5839.2013.01.05.PubMedCentralPubMed
57.
Zurück zum Zitat Murray N. Treatment of small cell lung cancer: the state of the art. Lung Cancer. 1997;17(1):S75–S89.CrossRefPubMed Murray N. Treatment of small cell lung cancer: the state of the art. Lung Cancer. 1997;17(1):S75–S89.CrossRefPubMed
58.
Zurück zum Zitat Rossi A, Maio M D, Chiodini P, et al. Carboplatin- or cisplatin-based chemotherapy in first-line treatment of small-cell lung cancer: the COCIS meta-analysis of individual patient data. J Clin Oncol. 2012;30(14):1692–8. doi:10.1200/JCO.2011.40.4905.CrossRefPubMed Rossi A, Maio M D, Chiodini P, et al. Carboplatin- or cisplatin-based chemotherapy in first-line treatment of small-cell lung cancer: the COCIS meta-analysis of individual patient data. J Clin Oncol. 2012;30(14):1692–8. doi:10.1200/JCO.2011.40.4905.CrossRefPubMed
59.
Zurück zum Zitat O’Brien ME, Ciuleanu TE, et al. Phase III trial comparing supportive care alone with supportive care with oral topotecan in patients with relapsed small-cell lung cancer. J Clin Oncol. 2006;24(34):5441–7.CrossRefPubMed O’Brien ME, Ciuleanu TE, et al. Phase III trial comparing supportive care alone with supportive care with oral topotecan in patients with relapsed small-cell lung cancer. J Clin Oncol. 2006;24(34):5441–7.CrossRefPubMed
60.
Zurück zum Zitat Reck M, Bondarenko I, Luft A, et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line therapy in extensive-disease-small-cell lung cancer: results from a randomized, double-blind, multicenter phase 2 trial. Ann Oncol. 2013;24(1):75–83. doi:10.1093/annonc/mds213.CrossRefPubMed Reck M, Bondarenko I, Luft A, et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line therapy in extensive-disease-small-cell lung cancer: results from a randomized, double-blind, multicenter phase 2 trial. Ann Oncol. 2013;24(1):75–83. doi:10.1093/annonc/mds213.CrossRefPubMed
61.
Zurück zum Zitat Spigel DR, Socinski MA. Rationale for chemotherapy, immunotherapy, and checkpoint blockade in SCLC: beyond traditional treatment approaches. J Thorac Oncol. 2013;8(5):587–98. doi:10.1097/JTO.0b013e318286cf88.PubMed Spigel DR, Socinski MA. Rationale for chemotherapy, immunotherapy, and checkpoint blockade in SCLC: beyond traditional treatment approaches. J Thorac Oncol. 2013;8(5):587–98. doi:10.1097/JTO.0b013e318286cf88.PubMed
62.
Zurück zum Zitat Sgambato A, Casaluce F, Maione P, et al. Medical treatment of small cell lung cancer: state of the art and new development. Expert Opin Pharmacother. 2013;14(15):2019–31. doi:10.1517/14656566.2013.823401.CrossRefPubMed Sgambato A, Casaluce F, Maione P, et al. Medical treatment of small cell lung cancer: state of the art and new development. Expert Opin Pharmacother. 2013;14(15):2019–31. doi:10.1517/14656566.2013.823401.CrossRefPubMed
63.
Zurück zum Zitat Kalemkerian GP. Advances in pharmacotherapy of small cell lung cancer. Expert Opin Pharmacother. 2014;15(16):2385–96. doi:10.1517/14656566.2014.957180.CrossRefPubMed Kalemkerian GP. Advances in pharmacotherapy of small cell lung cancer. Expert Opin Pharmacother. 2014;15(16):2385–96. doi:10.1517/14656566.2014.957180.CrossRefPubMed
64.
Zurück zum Zitat William WN Jr, Glisson BS. Novel strategies for the treatment of small-cell lung carcinoma. Nat Rev Clin Oncol. 2011;8(10):611–9. doi:10.1038/nrclinonc.2011.90.CrossRefPubMed William WN Jr, Glisson BS. Novel strategies for the treatment of small-cell lung carcinoma. Nat Rev Clin Oncol. 2011;8(10):611–9. doi:10.1038/nrclinonc.2011.90.CrossRefPubMed
65.
Zurück zum Zitat Verhelst K, Verstrepen L, Carpentier I, et al. IkB kinase e (IKKe): a therapeutic target in inflammation and cancer. Biochem Pharmacol. 2013;85(7):873–80. doi:10.1016/j.bcp.2013.01.007.CrossRefPubMed Verhelst K, Verstrepen L, Carpentier I, et al. IkB kinase e (IKKe): a therapeutic target in inflammation and cancer. Biochem Pharmacol. 2013;85(7):873–80. doi:10.1016/j.bcp.2013.01.007.CrossRefPubMed
66.
Zurück zum Zitat Erstad DJ, Cusack JC Jr. Targeting the NF-κB pathway in cancer therapy. Surg Oncol Clin N Am. 2013;22(4):705-46. doi: 10.1016/j.soc.2013.06.011. Erstad DJ, Cusack JC Jr. Targeting the NF-κB pathway in cancer therapy.  Surg Oncol Clin N Am. 2013;22(4):705-46. doi: 10.1016/j.soc.2013.06.011.
67.
Zurück zum Zitat Spitzner M, Ebner R, Wolff HA, et al. STAT3: a novel molecular mediator of resistance to chemoradiotherapy. Cancers (Basel). 2014;6(4):1986–2011. doi:10.3390/cancers6041986.CrossRef Spitzner M, Ebner R, Wolff HA, et al. STAT3: a novel molecular mediator of resistance to chemoradiotherapy. Cancers (Basel). 2014;6(4):1986–2011. doi:10.3390/cancers6041986.CrossRef
68.
Zurück zum Zitat Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer. 2009;9(11):798–809. doi:10.1038/nrc2734.CrossRefPubMed Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer. 2009;9(11):798–809. doi:10.1038/nrc2734.CrossRefPubMed
69.
Zurück zum Zitat Kennedy BC, Showers CR, Anderson DE, et al. Tumor-associated macrophages in glioma: friend or foe? J Oncol. 2013;2013:486912. doi:10.1155/2013/486912.PubMedCentralCrossRefPubMed Kennedy BC, Showers CR, Anderson DE, et al. Tumor-associated macrophages in glioma: friend or foe? J Oncol. 2013;2013:486912. doi:10.1155/2013/486912.PubMedCentralCrossRefPubMed
70.
Zurück zum Zitat Brantley EC, Benveniste EN. Signal transducer and activator of transcription-3: a molecular hub for signaling pathways in gliomas. Mol Cancer Res. 2008;6(5):675–84. doi:10.1158/1541 – 7786.MCR-07-2180.CrossRefPubMed Brantley EC, Benveniste EN. Signal transducer and activator of transcription-3: a molecular hub for signaling pathways in gliomas. Mol Cancer Res. 2008;6(5):675–84. doi:10.1158/1541 – 7786.MCR-07-2180.CrossRefPubMed
71.
Zurück zum Zitat Yu H, Lee H, Herrmann A, Buettner R, et al. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer. 2014;14(11):736–46. doi:10.1038/nrc3818.CrossRefPubMed Yu H, Lee H, Herrmann A, Buettner R, et al. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer. 2014;14(11):736–46. doi:10.1038/nrc3818.CrossRefPubMed
72.
Zurück zum Zitat Li Y, Du H, Qin Y, et al. Activation of the signal transducers and activators of the transcription 3 pathway in alveolar epithelial cells induces inflammation and adenocarcinomas in mouse lung. Cancer Res. 2007;67(18):8494–503.CrossRefPubMed Li Y, Du H, Qin Y, et al. Activation of the signal transducers and activators of the transcription 3 pathway in alveolar epithelial cells induces inflammation and adenocarcinomas in mouse lung. Cancer Res. 2007;67(18):8494–503.CrossRefPubMed
73.
Zurück zum Zitat Buchert M, Burns CJ, Ernst M. Targeting JAK kinase in solid tumors: emerging opportunities and challenges. Oncogene. 2015. doi:10.1038/onc.2015.150. Buchert M, Burns CJ, Ernst M. Targeting JAK kinase in solid tumors: emerging opportunities and challenges. Oncogene. 2015. doi:10.1038/onc.2015.150.
74.
Zurück zum Zitat Singh SK, Bhardwaj R, Wilczynska KM, et al. A complex of nuclear factor I-X3 and STAT3 regulates astrocyte and glioma migration through the secreted glycoprotein YKL-40. J Biol Chem. 2011;286(46):39893–903. doi:10.1074/jbc.M111.257451.PubMedCentralCrossRefPubMed Singh SK, Bhardwaj R, Wilczynska KM, et al. A complex of nuclear factor I-X3 and STAT3 regulates astrocyte and glioma migration through the secreted glycoprotein YKL-40. J Biol Chem. 2011;286(46):39893–903. doi:10.1074/jbc.M111.257451.PubMedCentralCrossRefPubMed
75.
Zurück zum Zitat Heitzer E, Ulz P, Geigl JB. Circulating tumor DNA as a liquid biopsy for cancer. Clin Chem. 2015;61(1):112–23. doi:10.1373/clinchem.2014.222679.CrossRefPubMed Heitzer E, Ulz P, Geigl JB. Circulating tumor DNA as a liquid biopsy for cancer. Clin Chem. 2015;61(1):112–23. doi:10.1373/clinchem.2014.222679.CrossRefPubMed
76.
Zurück zum Zitat Board RE, Williams VS, Knight L, et al. Isolation and extraction of circulating tumor DNA from patients with small cell lung cancer. Ann N Y Acad Sci. 2008;1137:98–107. doi:10.1196/annals.1448.020.CrossRefPubMed Board RE, Williams VS, Knight L, et al. Isolation and extraction of circulating tumor DNA from patients with small cell lung cancer. Ann N Y Acad Sci. 2008;1137:98–107. doi:10.1196/annals.1448.020.CrossRefPubMed
77.
Zurück zum Zitat Cayrefourcq L, Mazard T, Joosse S, et al. Establishment and characterization of a cell line from human circulating colon cancer cells. Cancer Res. 2015;75:892–901. doi:10.1158/0008-5472.CAN-14-2613.CrossRefPubMed Cayrefourcq L, Mazard T, Joosse S, et al. Establishment and characterization of a cell line from human circulating colon cancer cells. Cancer Res. 2015;75:892–901. doi:10.1158/0008-5472.CAN-14-2613.CrossRefPubMed
78.
Zurück zum Zitat Yu M, Bardia A, Aceto N, et al. Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science. 2014;345:216–20. doi:10.1126/science.1253533.PubMedCentralCrossRefPubMed Yu M, Bardia A, Aceto N, et al. Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science. 2014;345:216–20. doi:10.1126/science.1253533.PubMedCentralCrossRefPubMed
79.
Zurück zum Zitat Hamilton G, Rath B, Burghuber O. Chitinase-3-like-1/YKL-40 as marker of circulating tumor cells. Transl Lung Cancer Res. 2015;4(3):287-91. doi:10.3978/j.issn.2218–6751.2015.04.04.PubMed Hamilton G, Rath B, Burghuber O. Chitinase-3-like-1/YKL-40 as marker of circulating tumor cells. Transl Lung Cancer Res. 2015;4(3):287-91. doi:10.3978/j.issn.2218–6751.2015.04.04.PubMed
80.
Zurück zum Zitat Hodgkinson CL, Morrow CJ, Li Y, et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat Med. 2014;20:897–903. doi:10.1038/nm.3600.CrossRefPubMed Hodgkinson CL, Morrow CJ, Li Y, et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat Med. 2014;20:897–903. doi:10.1038/nm.3600.CrossRefPubMed
81.
Zurück zum Zitat Libreros S, Garcia-Areas R, Iragavarapu-Charyulu V. CHI3L1 plays a role in cancer through enhanced production of pro-inflammatory/pro-tumorigenic and angiogenic factors. Immunol Res. 2013;57:99–105. doi:10.1007/s12026-013-8459-y.PubMedCentralCrossRefPubMed Libreros S, Garcia-Areas R, Iragavarapu-Charyulu V. CHI3L1 plays a role in cancer through enhanced production of pro-inflammatory/pro-tumorigenic and angiogenic factors. Immunol Res. 2013;57:99–105. doi:10.1007/s12026-013-8459-y.PubMedCentralCrossRefPubMed
82.
Zurück zum Zitat Junker N, Johansen JS, Andersen CB, et al. Expression of YKL-40 by peritumoral macrophages in human small cell lung cancer. Lung Cancer. 2005;48(2):223–31.CrossRefPubMed Junker N, Johansen JS, Andersen CB, et al. Expression of YKL-40 by peritumoral macrophages in human small cell lung cancer. Lung Cancer. 2005;48(2):223–31.CrossRefPubMed
83.
Zurück zum Zitat Iwamoto FM, Hormigo A. Unveiling YKL-40, from serum marker to target therapy in glioblastoma. Front Oncol. 2014;4:90. doi:10.3389/fonc.2014.00090.PubMedCentralCrossRefPubMed Iwamoto FM, Hormigo A. Unveiling YKL-40, from serum marker to target therapy in glioblastoma. Front Oncol. 2014;4:90. doi:10.3389/fonc.2014.00090.PubMedCentralCrossRefPubMed
84.
Zurück zum Zitat Ji RC. Macrophages are important mediators of either tumor- or inflammation-induced lymphangiogenesis. Cell Mol Life Sci. 2012;69(6):897–914. doi:10.1007/s00018-011-0848-6.CrossRefPubMed Ji RC. Macrophages are important mediators of either tumor- or inflammation-induced lymphangiogenesis. Cell Mol Life Sci. 2012;69(6):897–914. doi:10.1007/s00018-011-0848-6.CrossRefPubMed
85.
Zurück zum Zitat Sarvi S, Mackinnon AC, Avlonitis N, et al. CD133 + cancer stem-like cells in small cell lung cancer are highly tumorigenic and chemoresistant but sensitive to a novel neuropeptide antagonist. Cancer Res. 2014;74(5):1554–65. doi:10.1158/0008-5472.CAN-13-1541.CrossRefPubMed Sarvi S, Mackinnon AC, Avlonitis N, et al. CD133 + cancer stem-like cells in small cell lung cancer are highly tumorigenic and chemoresistant but sensitive to a novel neuropeptide antagonist. Cancer Res. 2014;74(5):1554–65. doi:10.1158/0008-5472.CAN-13-1541.CrossRefPubMed
86.
Zurück zum Zitat Hamilton G, Olszewski U. Chemotherapy-induced enrichment of cancer stem cells in lung cancer. J Bioanal Biomed. 2013;S9:003. doi:10.4172/1948-593X.S9-003. Hamilton G, Olszewski U. Chemotherapy-induced enrichment of cancer stem cells in lung cancer. J Bioanal Biomed. 2013;S9:003. doi:10.4172/1948-593X.S9-003.
87.
Zurück zum Zitat Davis A, Tinker AV, Friedlander M. “Platinum resistant” ovarian cancer: what is it, who to treat and how to measure benefit? Gynecol Oncol. 2014;133(3):624–31. doi:10.1016/j.ygyno.2014.02.038.CrossRefPubMed Davis A, Tinker AV, Friedlander M. “Platinum resistant” ovarian cancer: what is it, who to treat and how to measure benefit? Gynecol Oncol. 2014;133(3):624–31. doi:10.1016/j.ygyno.2014.02.038.CrossRefPubMed
88.
Zurück zum Zitat Sherry MM, Reeves A, Wu JK, et al. STAT3 is required for proliferation and maintenance of multipotency in glioblastoma stem cells. Stem Cells. 2009;27(10):2383–92. doi:10.1002/stem.185.PubMedCentralCrossRefPubMed Sherry MM, Reeves A, Wu JK, et al. STAT3 is required for proliferation and maintenance of multipotency in glioblastoma stem cells. Stem Cells. 2009;27(10):2383–92. doi:10.1002/stem.185.PubMedCentralCrossRefPubMed
89.
Zurück zum Zitat Allavena P, Mantovani A. Immunology in the clinic review series; focus on cancer: tumour-associated macrophages: undisputed stars of the inflammatory tumour microenvironment. Clin Exp Immunol. 2012;167(2):195–205. doi:10.1111/j.1365–2249.2011.04515.x.PubMedCentralCrossRefPubMed Allavena P, Mantovani A. Immunology in the clinic review series; focus on cancer: tumour-associated macrophages: undisputed stars of the inflammatory tumour microenvironment. Clin Exp Immunol. 2012;167(2):195–205. doi:10.1111/j.1365–2249.2011.04515.x.PubMedCentralCrossRefPubMed
Metadaten
Titel
Smoking, inflammation and small cell lung cancer: recent developments
verfasst von
Gerhard Hamilton
Barbara Rath
Publikationsdatum
01.10.2015
Verlag
Springer Vienna
Erschienen in
Wiener Medizinische Wochenschrift / Ausgabe 19-20/2015
Print ISSN: 0043-5341
Elektronische ISSN: 1563-258X
DOI
https://doi.org/10.1007/s10354-015-0381-6

Weitere Artikel der Ausgabe 19-20/2015

Wiener Medizinische Wochenschrift 19-20/2015 Zur Ausgabe