Skip to main content
Erschienen in: Wiener Medizinische Wochenschrift 21-22/2014

01.11.2014 | Review

Translational hematology

verfasst von: Prim. Univ. Prof. Dr. Klaus Geissler

Erschienen in: Wiener Medizinische Wochenschrift | Ausgabe 21-22/2014

Einloggen, um Zugang zu erhalten

Summary

Translational research is scientific research that helps to make findings from basic science useful for practical applications in the clinic. The successful use of a drug that interferes with the specific molecular pathophysiology of cancer remains the ultimate vision in cancer medicine. Translational research is a multistep process including the discovery of a cytogenetic/molecular aberration as well as the demonstration of its pathophysiological relevance and its druggability by in vitro experiments and in vivo animal models. Information obtained from preclinical research paves the way for clinical trials in which a drug of interest is developed until its clinical application. Modern pathophysiology-oriented anticancer drugs that have been developed by translational research are available for clinical applications since the beginning of this millennium. By using these drugs higher efficacy and lower toxicity could be achieved as compared with previous treatments. In this article, we will present some of the most prominent examples of this translational approach.
Literatur
1.
Zurück zum Zitat Lackner MR, Wilson TR, Settleman J. Mechanisms of acquired resistance to targeted cancer therapies. Future Oncol. 2012;8(8):999–1014. doi:10.2217/fon.12.86.PubMedCrossRef Lackner MR, Wilson TR, Settleman J. Mechanisms of acquired resistance to targeted cancer therapies. Future Oncol. 2012;8(8):999–1014. doi:10.2217/fon.12.86.PubMedCrossRef
2.
Zurück zum Zitat Nowell PC, Hungerford DA. A minute chromosome in human chronic granulocytic leukemia. Science. 1960;132:1497–501. Nowell PC, Hungerford DA. A minute chromosome in human chronic granulocytic leukemia. Science. 1960;132:1497–501.
3.
Zurück zum Zitat Rowley JD. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243:290–3.PubMedCrossRef Rowley JD. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243:290–3.PubMedCrossRef
4.
Zurück zum Zitat Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science. 1990;247:824–30.PubMedCrossRef Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science. 1990;247:824–30.PubMedCrossRef
5.
Zurück zum Zitat Lugo TG, Pendergast AM, Muller AJ, et al. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science. 1990;247:1079–82.PubMedCrossRef Lugo TG, Pendergast AM, Muller AJ, et al. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science. 1990;247:1079–82.PubMedCrossRef
6.
Zurück zum Zitat Furet P, Caravatti G, Lydon N, et al. Modelling study of protein kinase inhibitors: binding mode of staurosporine and origin of the selectivity of CGP 52411. J Comput Aided Mol Des. 1995;9:465–72.PubMedCrossRef Furet P, Caravatti G, Lydon N, et al. Modelling study of protein kinase inhibitors: binding mode of staurosporine and origin of the selectivity of CGP 52411. J Comput Aided Mol Des. 1995;9:465–72.PubMedCrossRef
7.
Zurück zum Zitat Druker BJ, Tamura S, Buchdunger E, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med. 1996;2:561–6.PubMedCrossRef Druker BJ, Tamura S, Buchdunger E, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med. 1996;2:561–6.PubMedCrossRef
8.
Zurück zum Zitat Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344:1031–7.PubMedCrossRef Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344:1031–7.PubMedCrossRef
9.
Zurück zum Zitat O’Brien SG, Guilhot F, Larson RA, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2003;348:994–1004.CrossRef O’Brien SG, Guilhot F, Larson RA, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2003;348:994–1004.CrossRef
10.
Zurück zum Zitat Druker BJ, Guilhot F, O’Brien SG, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355:2408–17.PubMedCrossRef Druker BJ, Guilhot F, O’Brien SG, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355:2408–17.PubMedCrossRef
11.
Zurück zum Zitat Kantarjian H, Giles F, Wunderle L, et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med. 2006;354:2542–51.PubMedCrossRef Kantarjian H, Giles F, Wunderle L, et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med. 2006;354:2542–51.PubMedCrossRef
12.
Zurück zum Zitat Talpaz M, Shah NP, Kantarjian H, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med. 2006;354:2531–41.PubMedCrossRef Talpaz M, Shah NP, Kantarjian H, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med. 2006;354:2531–41.PubMedCrossRef
13.
Zurück zum Zitat Cortes JE, Kantarjian HM, Brümmendorf TH, et al. Safety and efficacy of bosutinib (SKI-606) in chronic phase Philadelphia chromosome-positive chronic myeloid leukemia patients with resistance or intolerance to imatinib. Blood. 2011;118:4567–76. doi:10.1182/blood-2011-05-355594. Epub 2011 Aug 24. Cortes JE, Kantarjian HM, Brümmendorf TH, et al. Safety and efficacy of bosutinib (SKI-606) in chronic phase Philadelphia chromosome-positive chronic myeloid leukemia patients with resistance or intolerance to imatinib. Blood. 2011;118:4567–76. doi:10.1182/blood-2011-05-355594. Epub 2011 Aug 24.
14.
Zurück zum Zitat Cortes JE, Kantarjian H, Shah NP, et al. Ponatinib in refractory Philadelphia chromosome-positive leukemias. N Engl J Med. 2012;367:2075-88. doi:10.1056/NEJMoa1205127.PubMedCentralPubMedCrossRef Cortes JE, Kantarjian H, Shah NP, et al. Ponatinib in refractory Philadelphia chromosome-positive leukemias. N Engl J Med. 2012;367:2075-88. doi:10.1056/NEJMoa1205127.PubMedCentralPubMedCrossRef
15.
Zurück zum Zitat Saglio G, Kim DW, Issaragrisil S, et al. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med. 2010;362:2251–9. doi:10.1056/NEJMoa0912614. Epub 2010 Jun 5. Saglio G, Kim DW, Issaragrisil S, et al. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med. 2010;362:2251–9. doi:10.1056/NEJMoa0912614. Epub 2010 Jun 5.
16.
Zurück zum Zitat Kantarjian H, Shah NP, Hochhaus A, et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2010;362:2260–70. doi:10.1056/NEJMoa1002315. Epub 2010 Jun 5. Kantarjian H, Shah NP, Hochhaus A, et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2010;362:2260–70. doi:10.1056/NEJMoa1002315. Epub 2010 Jun 5.
17.
Zurück zum Zitat Prchal JF, Adamson JW, Murphy S, et al. Polycythemia vera. The in vitro response of normal and abnormal stem cell lines to erythropoietin. J Clin Invest. 1978;61:1044–7.PubMedCentralPubMedCrossRef Prchal JF, Adamson JW, Murphy S, et al. Polycythemia vera. The in vitro response of normal and abnormal stem cell lines to erythropoietin. J Clin Invest. 1978;61:1044–7.PubMedCentralPubMedCrossRef
18.
Zurück zum Zitat Weinberg RS. In vitro erythropoiesis in polycythemia vera and other myeloproliferative disorders. Semin Hematol. 1997;34:64–9. Review.PubMed Weinberg RS. In vitro erythropoiesis in polycythemia vera and other myeloproliferative disorders. Semin Hematol. 1997;34:64–9. Review.PubMed
19.
Zurück zum Zitat Aaronson DS, Horvath CM. A road map for those who don’t know JAK-STAT. Science. 2002;296:1653–5. Review.PubMedCrossRef Aaronson DS, Horvath CM. A road map for those who don’t know JAK-STAT. Science. 2002;296:1653–5. Review.PubMedCrossRef
20.
Zurück zum Zitat Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352:1779–90.PubMedCrossRef Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352:1779–90.PubMedCrossRef
21.
Zurück zum Zitat Baxter EJ, Scott LM, Campbell PJ, et al. Cancer Genome Project. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365:1054–61.PubMedCrossRef Baxter EJ, Scott LM, Campbell PJ, et al. Cancer Genome Project. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365:1054–61.PubMedCrossRef
22.
Zurück zum Zitat James C, Ugo V, Le Couédic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434:1144–8.PubMedCrossRef James C, Ugo V, Le Couédic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434:1144–8.PubMedCrossRef
23.
Zurück zum Zitat Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7:387–97.PubMedCrossRef Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7:387–97.PubMedCrossRef
24.
Zurück zum Zitat Zhao R, Xing S, Li Z, et al. Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem. 2005;280:22788–92. Epub 2005 Apr 29. Zhao R, Xing S, Li Z, et al. Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem. 2005;280:22788–92. Epub 2005 Apr 29.
25.
Zurück zum Zitat Lacout C, Pisani DF, Tulliez M, et al. JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood. 2006;108:1652–60.PubMedCrossRef Lacout C, Pisani DF, Tulliez M, et al. JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood. 2006;108:1652–60.PubMedCrossRef
26.
Zurück zum Zitat Wernig G, Mercher T, Okabe R, et al. Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood. 2006;107:4274–81.PubMedCentralPubMedCrossRef Wernig G, Mercher T, Okabe R, et al. Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood. 2006;107:4274–81.PubMedCentralPubMedCrossRef
27.
Zurück zum Zitat Zaleskas VM, Krause DS, Lazarides K, et al. Molecular pathogenesis and therapy of polycythemia induced in mice by JAK2 V617F. PLoS One. 2006;1:e18.PubMedCentralPubMedCrossRef Zaleskas VM, Krause DS, Lazarides K, et al. Molecular pathogenesis and therapy of polycythemia induced in mice by JAK2 V617F. PLoS One. 2006;1:e18.PubMedCentralPubMedCrossRef
28.
Zurück zum Zitat Parganas E, Wang D, Stravopodis D, et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell. 1998;93:385–95.PubMedCrossRef Parganas E, Wang D, Stravopodis D, et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell. 1998;93:385–95.PubMedCrossRef
29.
Zurück zum Zitat Staerk J, Kallin A, Royer Y, et al. JAK2, the JAK2 V617F mutant and cytokine receptors. Pathol Biol (Paris). 2007;55:88–91.CrossRef Staerk J, Kallin A, Royer Y, et al. JAK2, the JAK2 V617F mutant and cytokine receptors. Pathol Biol (Paris). 2007;55:88–91.CrossRef
30.
Zurück zum Zitat Touw IP, van de Geijn GJ. Granulocyte colony-stimulating factor and its receptor in normal myeloid cell development, leukemia and related blood cell disorders. Front Biosci. 2007;12:800–15.PubMedCrossRef Touw IP, van de Geijn GJ. Granulocyte colony-stimulating factor and its receptor in normal myeloid cell development, leukemia and related blood cell disorders. Front Biosci. 2007;12:800–15.PubMedCrossRef
31.
Zurück zum Zitat Quelle FW, Sato N, Witthuhn BA, et al. JAK2 associates with the beta c chain of the receptor for granulocyte-macrophage colony-stimulating factor, and its activation requires the membrane-proximal region. Mol Cell Biol. 1994;14:4335–41.PubMedCentralPubMed Quelle FW, Sato N, Witthuhn BA, et al. JAK2 associates with the beta c chain of the receptor for granulocyte-macrophage colony-stimulating factor, and its activation requires the membrane-proximal region. Mol Cell Biol. 1994;14:4335–41.PubMedCentralPubMed
32.
33.
Zurück zum Zitat Pikman Y, Lee BH, Mercher T, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3:e270.PubMedCentralPubMedCrossRef Pikman Y, Lee BH, Mercher T, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3:e270.PubMedCentralPubMedCrossRef
34.
Zurück zum Zitat Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369:2379–90. doi:10.1056/NEJMoa1311347. Epub 2013 Dec 10. Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369:2379–90. doi:10.1056/NEJMoa1311347. Epub 2013 Dec 10.
35.
Zurück zum Zitat Nangalia J, Massie CE, Baxter EJ, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369:2391–405. doi:10.1056/NEJMoa1312542. Epub 2013 Dec 10. Nangalia J, Massie CE, Baxter EJ, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369:2391–405. doi:10.1056/NEJMoa1312542. Epub 2013 Dec 10.
36.
Zurück zum Zitat Quintás-Cardama A, Vaddi K, Liu P, et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood. 2010;115:3109–17. doi:10.1182/blood-2009-04-214957. Epub 2010 Feb 3. Quintás-Cardama A, Vaddi K, Liu P, et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood. 2010;115:3109–17. doi:10.1182/blood-2009-04-214957. Epub 2010 Feb 3.
37.
Zurück zum Zitat Verstovsek S, Kantarjian H, Mesa RA, et al. Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med. 2010;363:1117–27.PubMedCrossRef Verstovsek S, Kantarjian H, Mesa RA, et al. Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med. 2010;363:1117–27.PubMedCrossRef
38.
Zurück zum Zitat Mascarenhas J, Mughal TI, Verstovsek S. Biology and clinical management of myeloproliferative neoplasms and development of the JAK inhibitor ruxolitinib. Curr Med Chem. 2012;19:4399–413.PubMedCentralPubMedCrossRef Mascarenhas J, Mughal TI, Verstovsek S. Biology and clinical management of myeloproliferative neoplasms and development of the JAK inhibitor ruxolitinib. Curr Med Chem. 2012;19:4399–413.PubMedCentralPubMedCrossRef
39.
Zurück zum Zitat Harrison C, Kiladjian JJ, Al-Ali HK, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012;366:787–98.PubMedCrossRef Harrison C, Kiladjian JJ, Al-Ali HK, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012;366:787–98.PubMedCrossRef
40.
Zurück zum Zitat Verstovsek S, Mesa RA, Gotlib J, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012;366:799–807.PubMedCrossRef Verstovsek S, Mesa RA, Gotlib J, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012;366:799–807.PubMedCrossRef
41.
Zurück zum Zitat Faderl S, Talpaz M, Estrov Z, et al. The biology of chronic myeloid leukemia. N Engl J Med. 1999;341:164–72. Review.PubMedCrossRef Faderl S, Talpaz M, Estrov Z, et al. The biology of chronic myeloid leukemia. N Engl J Med. 1999;341:164–72. Review.PubMedCrossRef
43.
Zurück zum Zitat Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med. 2001;344:1038–42.PubMedCrossRef Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med. 2001;344:1038–42.PubMedCrossRef
44.
Zurück zum Zitat Ellisen LW, Bird J, West DC, et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell. 1991;66:649–61.PubMedCrossRef Ellisen LW, Bird J, West DC, et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell. 1991;66:649–61.PubMedCrossRef
45.
Zurück zum Zitat Weng AP, Ferrando AA, Lee W, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306:269–71.PubMedCrossRef Weng AP, Ferrando AA, Lee W, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306:269–71.PubMedCrossRef
46.
Zurück zum Zitat Li K, Li Y, Wu W, et al. Modulation of Notch signaling by antibodies specific for the extracellular negative regulatory region of NOTCH3. J Biol Chem. 2008;283(12):8046–54. doi:10.1074/jbc.M800170200. Epub 2008 Jan 8. Li K, Li Y, Wu W, et al. Modulation of Notch signaling by antibodies specific for the extracellular negative regulatory region of NOTCH3. J Biol Chem. 2008;283(12):8046–54. doi:10.1074/jbc.M800170200. Epub 2008 Jan 8.
47.
Zurück zum Zitat Real PJ, Tosello V, Palomero T, et al. Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat Med. 2009;15:50–8. doi:10.1038/nm.1900. Epub 2008 Dec 21. Real PJ, Tosello V, Palomero T, et al. Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat Med. 2009;15:50–8. doi:10.1038/nm.1900. Epub 2008 Dec 21.
48.
Zurück zum Zitat Riccio O, van Gijn ME, Bezdek AC, et al. Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2. EMBO Rep. 2008;9:377–83. doi:10.1038/embor.2008.7. Epub 2008 Feb 15. Riccio O, van Gijn ME, Bezdek AC, et al. Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2. EMBO Rep. 2008;9:377–83. doi:10.1038/embor.2008.7. Epub 2008 Feb 15.
49.
Zurück zum Zitat Wu Y, Cain-Hom C, Choy L, et al. Therapeutic antibody targeting of individual Notch receptors. Nature. 2010;464:1052–7. doi:10.1038/nature08878.PubMedCrossRef Wu Y, Cain-Hom C, Choy L, et al. Therapeutic antibody targeting of individual Notch receptors. Nature. 2010;464:1052–7. doi:10.1038/nature08878.PubMedCrossRef
50.
Zurück zum Zitat Rai KR, Holland JF, Glidewell OJ, et al. Treatment of acute myelocytic leukemia: a study by cancer and leukemia group B. Blood. 1981;58:1203–12.PubMed Rai KR, Holland JF, Glidewell OJ, et al. Treatment of acute myelocytic leukemia: a study by cancer and leukemia group B. Blood. 1981;58:1203–12.PubMed
51.
Zurück zum Zitat Estey EH. Acute myeloid leukemia: 2013 update on risk-stratification and management. Am J Hematol. 2013;88:318–27. doi:10.1002/ajh.23404.PubMedCrossRef Estey EH. Acute myeloid leukemia: 2013 update on risk-stratification and management. Am J Hematol. 2013;88:318–27. doi:10.1002/ajh.23404.PubMedCrossRef
52.
Zurück zum Zitat de Thé H, Chomienne C, Lanotte M, et al. The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature. 1990;347:558–61.PubMedCrossRef de Thé H, Chomienne C, Lanotte M, et al. The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature. 1990;347:558–61.PubMedCrossRef
53.
Zurück zum Zitat Allenby G, Bocquel MT, Saunders M, et al. Retinoic acid receptors and retinoid X receptors: interactions with endogenous retinoic acids. Proc Natl Acad Sci U S A. 1993;90:30–4.PubMedCentralPubMedCrossRef Allenby G, Bocquel MT, Saunders M, et al. Retinoic acid receptors and retinoid X receptors: interactions with endogenous retinoic acids. Proc Natl Acad Sci U S A. 1993;90:30–4.PubMedCentralPubMedCrossRef
54.
Zurück zum Zitat Huang ME, Ye YC, Chen SR, et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood. 1988;72:567–72.PubMed Huang ME, Ye YC, Chen SR, et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood. 1988;72:567–72.PubMed
55.
Zurück zum Zitat Tallman MS, Andersen JW, Schiffer CA, et al. All-trans-retinoic acid in acute promyelocytic leukemia. N Engl J Med. 1997;337:1021–8.PubMedCrossRef Tallman MS, Andersen JW, Schiffer CA, et al. All-trans-retinoic acid in acute promyelocytic leukemia. N Engl J Med. 1997;337:1021–8.PubMedCrossRef
56.
Zurück zum Zitat Soignet S, Fleischauer A, Polyak T, et al. All-trans retinoic acid significantly increases 5-year survival in patients with acute promyelocytic leukemia: long-term follow-up of the New York study. Cancer Chemother Pharmacol. 1997;40:Suppl:S25–9. Soignet S, Fleischauer A, Polyak T, et al. All-trans retinoic acid significantly increases 5-year survival in patients with acute promyelocytic leukemia: long-term follow-up of the New York study. Cancer Chemother Pharmacol. 1997;40:Suppl:S25–9.
57.
Zurück zum Zitat Soignet SL, Maslak P, Wang ZG, et al. Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med. 1998;339:1341–8.PubMedCrossRef Soignet SL, Maslak P, Wang ZG, et al. Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med. 1998;339:1341–8.PubMedCrossRef
58.
Zurück zum Zitat Lo-Coco F, Avvisati G, Vignetti M, et al. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med. 2013;369:111–21. doi:10.1056/NEJMoa1300874.PubMedCrossRef Lo-Coco F, Avvisati G, Vignetti M, et al. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med. 2013;369:111–21. doi:10.1056/NEJMoa1300874.PubMedCrossRef
59.
Zurück zum Zitat Matthews W, Jordan CT, Wiegand GW, et al. A receptor tyrosine kinase specific to hematopoietic stem and progenitor cell-enriched populations. Cell. 1991;65:1143–52.PubMedCrossRef Matthews W, Jordan CT, Wiegand GW, et al. A receptor tyrosine kinase specific to hematopoietic stem and progenitor cell-enriched populations. Cell. 1991;65:1143–52.PubMedCrossRef
60.
Zurück zum Zitat Schlenk RF, Döhner K, Krauter J, et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med. 2008;358:1909-18. doi:10.1056/NEJMoa074306.PubMedCrossRef Schlenk RF, Döhner K, Krauter J, et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med. 2008;358:1909-18. doi:10.1056/NEJMoa074306.PubMedCrossRef
61.
Zurück zum Zitat Kottaridis PD, Gale RE, Frew ME, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood. 2001;98:1752–9.PubMedCrossRef Kottaridis PD, Gale RE, Frew ME, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood. 2001;98:1752–9.PubMedCrossRef
62.
Zurück zum Zitat Whitman SP, Archer KJ, Feng L, et al. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. Cancer Res. 2001;61:7233–9.PubMed Whitman SP, Archer KJ, Feng L, et al. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. Cancer Res. 2001;61:7233–9.PubMed
63.
Zurück zum Zitat Metzelder S, Wang Y, Wollmer E, et al. Compassionate use of sorafenib in FLT3-ITD-positive acute myeloid leukemia: sustained regression before and after allogeneic stem cell transplantation. Blood. 2009;113:6567–71. doi:10.1182/blood-2009-03-208298. Epub 2009 Apr 23. Metzelder S, Wang Y, Wollmer E, et al. Compassionate use of sorafenib in FLT3-ITD-positive acute myeloid leukemia: sustained regression before and after allogeneic stem cell transplantation. Blood. 2009;113:6567–71. doi:10.1182/blood-2009-03-208298. Epub 2009 Apr 23.
64.
65.
Zurück zum Zitat Djabali M, Selleri L, Parry P, et al. A trithorax-like gene is interrupted by chromosome 11q23 translocations in acute leukaemias. Nat Genet. 1992;2:113–8.PubMedCrossRef Djabali M, Selleri L, Parry P, et al. A trithorax-like gene is interrupted by chromosome 11q23 translocations in acute leukaemias. Nat Genet. 1992;2:113–8.PubMedCrossRef
67.
68.
Zurück zum Zitat Bernal A, Pastore RD, Asgary Z, et al. Survival of leukemic B cells promoted by engagement of the antigen receptor. Blood. 2001;98:3050–7.PubMedCrossRef Bernal A, Pastore RD, Asgary Z, et al. Survival of leukemic B cells promoted by engagement of the antigen receptor. Blood. 2001;98:3050–7.PubMedCrossRef
69.
Zurück zum Zitat Tomlinson MG, Woods DB, McMahon M, et al. A conditional form of Bruton’s tyrosine kinase is sufficient to activate multiple downstream signaling pathways via PLC Gamma 2 in B cells. BMC Immunol. 2001;2:4. Epub 2001 Jun 8. Tomlinson MG, Woods DB, McMahon M, et al. A conditional form of Bruton’s tyrosine kinase is sufficient to activate multiple downstream signaling pathways via PLC Gamma 2 in B cells. BMC Immunol. 2001;2:4. Epub 2001 Jun 8.
70.
Zurück zum Zitat Craxton A, Jiang A, Kurosaki T, et al. Syk and Bruton’s tyrosine kinase are required for B cell antigen receptor-mediated activation of the kinase Akt. J Biol Chem. 1999;274:30644–50.PubMedCrossRef Craxton A, Jiang A, Kurosaki T, et al. Syk and Bruton’s tyrosine kinase are required for B cell antigen receptor-mediated activation of the kinase Akt. J Biol Chem. 1999;274:30644–50.PubMedCrossRef
71.
Zurück zum Zitat Petro JB1, Rahman SM, Ballard DW, et al. Bruton’s tyrosine kinase is required for activation of IkappaB kinase and nuclear factor kappaB in response to B cell receptor engagement. J Exp Med. 2000;191:1745–54.PubMedCentralPubMedCrossRef Petro JB1, Rahman SM, Ballard DW, et al. Bruton’s tyrosine kinase is required for activation of IkappaB kinase and nuclear factor kappaB in response to B cell receptor engagement. J Exp Med. 2000;191:1745–54.PubMedCentralPubMedCrossRef
72.
Zurück zum Zitat Petro JB, Khan WN. Phospholipase C-gamma 2 couples Bruton’s tyrosine kinase to the NF-kappaB signaling pathway in B lymphocytes. J Biol Chem. 2001;276:1715–9. Epub 2000 Oct 19. Petro JB, Khan WN. Phospholipase C-gamma 2 couples Bruton’s tyrosine kinase to the NF-kappaB signaling pathway in B lymphocytes. J Biol Chem. 2001;276:1715–9. Epub 2000 Oct 19.
73.
Zurück zum Zitat Spaargaren M, Beuling EA, Rurup ML, et al. The B cell antigen receptor controls integrin activity through Btk and PLCgamma2. J Exp Med. 2003;198:1539–50. Epub 2003 Nov 10. Spaargaren M, Beuling EA, Rurup ML, et al. The B cell antigen receptor controls integrin activity through Btk and PLCgamma2. J Exp Med. 2003;198:1539–50. Epub 2003 Nov 10.
74.
Zurück zum Zitat Herman SE, Gordon AL, Hertlein E, et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood. 2011;117:6287–96. doi:10.1182/blood-2011-01-328484. Epub 2011 Mar 21. Herman SE, Gordon AL, Hertlein E, et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood. 2011;117:6287–96. doi:10.1182/blood-2011-01-328484. Epub 2011 Mar 21.
75.
Zurück zum Zitat Ponader S, Chen SS, Buggy JJ, et al. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood. 2012;119:1182–9. doi:10.1182/blood-2011-10-386417. Epub 2011 Dec 16. Ponader S, Chen SS, Buggy JJ, et al. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood. 2012;119:1182–9. doi:10.1182/blood-2011-10-386417. Epub 2011 Dec 16.
76.
Zurück zum Zitat Advani RH, Buggy JJ, Sharman JP, et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol. 2013;31:88–94. doi:10.1200/JCO.2012.42.7906. Epub 2012 Oct 8. Advani RH, Buggy JJ, Sharman JP, et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol. 2013;31:88–94. doi:10.1200/JCO.2012.42.7906. Epub 2012 Oct 8.
77.
Zurück zum Zitat Byrd JC, Furman RR, Coutre SE, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369:32–42. doi:10.1056/NEJMoa1215637. Epub 2013 Jun 19. Byrd JC, Furman RR, Coutre SE, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369:32–42. doi:10.1056/NEJMoa1215637. Epub 2013 Jun 19.
78.
Zurück zum Zitat Chiarle R, Voena C, Ambrogio C, et al. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer. 2008;8:11–23.PubMedCrossRef Chiarle R, Voena C, Ambrogio C, et al. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer. 2008;8:11–23.PubMedCrossRef
79.
Zurück zum Zitat Kwak EL, Bang YJ, Camidge DR, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363:1693–703. doi:10.1056/NEJMoa1006448. Kwak EL, Bang YJ, Camidge DR, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363:1693–703. doi:10.1056/NEJMoa1006448.
80.
Zurück zum Zitat Gambacorti-Passerini C, Messa C, Pogliani EM. Crizotinib in anaplastic large-cell lymphoma. N Engl J Med. 2011;364:775–6. doi:10.1056/NEJMc1013224. Gambacorti-Passerini C, Messa C, Pogliani EM. Crizotinib in anaplastic large-cell lymphoma. N Engl J Med. 2011;364:775–6. doi:10.1056/NEJMc1013224.
81.
Zurück zum Zitat Laimer D, Dolznig H, Kollmann K, et al. PDGFR blockade is a rational and effective therapy for NPM-ALK-driven lymphomas. Nat Med. 2012;18:1699–704. doi:10.1038/nm.2966. Epub 2012 Oct 14. Laimer D, Dolznig H, Kollmann K, et al. PDGFR blockade is a rational and effective therapy for NPM-ALK-driven lymphomas. Nat Med. 2012;18:1699–704. doi:10.1038/nm.2966. Epub 2012 Oct 14.
82.
Zurück zum Zitat Geary CG, Catovsky D, Wiltshaw E, et al. Chronic myelomonocytic leukaemia. Br J Haematol. 1975;30:289–302.PubMedCrossRef Geary CG, Catovsky D, Wiltshaw E, et al. Chronic myelomonocytic leukaemia. Br J Haematol. 1975;30:289–302.PubMedCrossRef
83.
Zurück zum Zitat Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the classification of the myelodysplastic syndromes. Br J Haematol. 1982;51:189–99.PubMedCrossRef Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the classification of the myelodysplastic syndromes. Br J Haematol. 1982;51:189–99.PubMedCrossRef
84.
Zurück zum Zitat Solal-Celigny P, Desaint B, Herrera A, et al. Chronic myelomonocytic leukemia according to FAB classification: analysis of 35 cases. Blood. 1984;63:634–8.PubMed Solal-Celigny P, Desaint B, Herrera A, et al. Chronic myelomonocytic leukemia according to FAB classification: analysis of 35 cases. Blood. 1984;63:634–8.PubMed
85.
Zurück zum Zitat Geissler K, Hinterberger W, Bettelheim P, et al. Colony growth characteristics in chronic myelomonocytic leukemia. Leuk Res. 1988;12:373–7.PubMedCrossRef Geissler K, Hinterberger W, Bettelheim P, et al. Colony growth characteristics in chronic myelomonocytic leukemia. Leuk Res. 1988;12:373–7.PubMedCrossRef
86.
Zurück zum Zitat Everson MP, Brown CB, Lilly MB. Interleukin-6 and granulocyte-macrophage colony-stimulating factor are candidate growth factors for chronic myelomonocytic leukemia cells. Blood. 1989;74:1472–6.PubMed Everson MP, Brown CB, Lilly MB. Interleukin-6 and granulocyte-macrophage colony-stimulating factor are candidate growth factors for chronic myelomonocytic leukemia cells. Blood. 1989;74:1472–6.PubMed
87.
Zurück zum Zitat Ramshaw HS, Bardy PG, Lee MA, Lopez AF. Chronic myelomonocytic leukemia requires granulocyte-macrophage colony-stimulating factor for growth in vitro and in vivo. Exp Hematol. 2002;30:1124–31.PubMedCrossRef Ramshaw HS, Bardy PG, Lee MA, Lopez AF. Chronic myelomonocytic leukemia requires granulocyte-macrophage colony-stimulating factor for growth in vitro and in vivo. Exp Hematol. 2002;30:1124–31.PubMedCrossRef
88.
Zurück zum Zitat Geissler K, Ohler L, Födinger M, et al. Interleukin 10 inhibits growth and granulocyte/macrophage colony-stimulating factor production in chronic myelomonocytic leukemia cells. J Exp Med. 1996;184:1377–84.PubMedCrossRef Geissler K, Ohler L, Födinger M, et al. Interleukin 10 inhibits growth and granulocyte/macrophage colony-stimulating factor production in chronic myelomonocytic leukemia cells. J Exp Med. 1996;184:1377–84.PubMedCrossRef
89.
Zurück zum Zitat Wang J, Liu Y, Li Z, et al. Endogenous oncogenic Nras mutation promotes aberrant GM-CSF signaling in granulocytic/monocytic precursors in a murine model of chronic myelomonocytic leukemia. Blood. 2010;116:5991–6002. doi:10.1182/blood-2010-04-281527. Epub 2010 Oct 4. Wang J, Liu Y, Li Z, et al. Endogenous oncogenic Nras mutation promotes aberrant GM-CSF signaling in granulocytic/monocytic precursors in a murine model of chronic myelomonocytic leukemia. Blood. 2010;116:5991–6002. doi:10.1182/blood-2010-04-281527. Epub 2010 Oct 4.
90.
Zurück zum Zitat Emanuel PD, Shannon KM, Castleberry RP. Juvenile myelomonocytic leukemia: molecular understanding and prospects for therapy. Mol Med Today. 1996;2:468–75.PubMedCrossRef Emanuel PD, Shannon KM, Castleberry RP. Juvenile myelomonocytic leukemia: molecular understanding and prospects for therapy. Mol Med Today. 1996;2:468–75.PubMedCrossRef
91.
Zurück zum Zitat Aricò M, Biondi A, Pui CH. Juvenile myelomonocytic leukemia. Blood. 1997;90:479–88. Review.PubMed Aricò M, Biondi A, Pui CH. Juvenile myelomonocytic leukemia. Blood. 1997;90:479–88. Review.PubMed
92.
Zurück zum Zitat Shannon KM, O’Connell P, Martin GA, et al. Loss of the normal NF1 allele from the bone marrow of children with type 1 neurofibromatosis and malignant myeloid disorders. N Engl J Med. 1994;330:597–601.PubMedCrossRef Shannon KM, O’Connell P, Martin GA, et al. Loss of the normal NF1 allele from the bone marrow of children with type 1 neurofibromatosis and malignant myeloid disorders. N Engl J Med. 1994;330:597–601.PubMedCrossRef
93.
Zurück zum Zitat Miles DK, Freedman MH, Stephens K, et al. Patterns of hematopoietic lineage involvement in children with neurofibromatosis type 1 and malignant myeloid disorders. Blood. 1996;88:4314–20.PubMed Miles DK, Freedman MH, Stephens K, et al. Patterns of hematopoietic lineage involvement in children with neurofibromatosis type 1 and malignant myeloid disorders. Blood. 1996;88:4314–20.PubMed
94.
Zurück zum Zitat Niemeyer CM, Kang MW, Shin DH, et al. Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia. Nat Genet. 2010;42:794–800. doi:10.1038/ng.641. Epub 2010 Aug 8. Niemeyer CM, Kang MW, Shin DH, et al. Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia. Nat Genet. 2010;42:794–800. doi:10.1038/ng.641. Epub 2010 Aug 8.
95.
Zurück zum Zitat Kalra R, Paderanga DC, Olson K, Shannon KM. Genetic analysis is consistent with the hypothesis that NF1 limits myeloid cell growth through p21ras. Blood. 1994;84:3435–9.PubMed Kalra R, Paderanga DC, Olson K, Shannon KM. Genetic analysis is consistent with the hypothesis that NF1 limits myeloid cell growth through p21ras. Blood. 1994;84:3435–9.PubMed
96.
Zurück zum Zitat Loh ML, Vattikuti S, Schubbert S, et al. Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood. 2004;103:2325–31. Epub 2003 Nov 26. Loh ML, Vattikuti S, Schubbert S, et al. Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood. 2004;103:2325–31. Epub 2003 Nov 26.
97.
Zurück zum Zitat Tartaglia M, Niemeyer CM, Fragale A, et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet. 2003;34:148–50.PubMedCrossRef Tartaglia M, Niemeyer CM, Fragale A, et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet. 2003;34:148–50.PubMedCrossRef
98.
Zurück zum Zitat Neel BG1, Gu H, Pao L. The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci. 2003;28:284–93. Neel BG1, Gu H, Pao L. The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci. 2003;28:284–93.
99.
Zurück zum Zitat Van Meter ME, Díaz-Flores E, Archard JA, et al. K-RasG12D expression induces hyperproliferation and aberrant signaling in primary hematopoietic stem/progenitor cells. Blood. 2007;109:3945–52. Epub 2006 Dec 27. Van Meter ME, Díaz-Flores E, Archard JA, et al. K-RasG12D expression induces hyperproliferation and aberrant signaling in primary hematopoietic stem/progenitor cells. Blood. 2007;109:3945–52. Epub 2006 Dec 27.
100.
Zurück zum Zitat Li Q, Haigis KM, McDaniel A, et al. Hematopoiesis and leukemogenesis in mice expressing oncogenic NrasG12D from the endogenous locus. Blood. 2011;117:2022–32. doi:10.1182/blood-2010-04-280750. Epub 2010 Dec 16. Li Q, Haigis KM, McDaniel A, et al. Hematopoiesis and leukemogenesis in mice expressing oncogenic NrasG12D from the endogenous locus. Blood. 2011;117:2022–32. doi:10.1182/blood-2010-04-280750. Epub 2010 Dec 16.
101.
Zurück zum Zitat Parikh C, Subrahmanyam R, Ren R. Oncogenic NRAS rapidly and efficiently induces CMML- and AML-like diseases in mice. Blood. 2006;108:2349–57. Epub 2006 Jun 8. Parikh C, Subrahmanyam R, Ren R. Oncogenic NRAS rapidly and efficiently induces CMML- and AML-like diseases in mice. Blood. 2006;108:2349–57. Epub 2006 Jun 8.
102.
Zurück zum Zitat Chan RJ, Leedy MB, Munugalavadla V, et al. Human somatic PTPN11 mutations induce hematopoietic-cell hypersensitivity to granulocyte-macrophage colony-stimulating factor. Blood. 2005;105:3737–42. Epub 2005 Jan 11. Chan RJ, Leedy MB, Munugalavadla V, et al. Human somatic PTPN11 mutations induce hematopoietic-cell hypersensitivity to granulocyte-macrophage colony-stimulating factor. Blood. 2005;105:3737–42. Epub 2005 Jan 11.
103.
Zurück zum Zitat Le DT, Kong N, Zhu Y, et al. Somatic inactivation of Nf1 in hematopoietic cells results in a progressive myeloproliferative disorder. Blood. 2004;103:4243–50. Epub 2004 Feb 24. Le DT, Kong N, Zhu Y, et al. Somatic inactivation of Nf1 in hematopoietic cells results in a progressive myeloproliferative disorder. Blood. 2004;103:4243–50. Epub 2004 Feb 24.
104.
Zurück zum Zitat Braun BS, Shannon K. Targeting Ras in myeloid leukemias. Clin Cancer Res. 2008;14:2249–52. doi:10.1158/1078-0432.CCR-07-1005.PubMedCrossRef Braun BS, Shannon K. Targeting Ras in myeloid leukemias. Clin Cancer Res. 2008;14:2249–52. doi:10.1158/1078-0432.CCR-07-1005.PubMedCrossRef
105.
Zurück zum Zitat Chang T, Krisman K, Theobald EH, et al. Sustained MEK inhibition abrogates myeloproliferative disease in Nf1 mutant mice. J Clin Invest. 2013;123:335–9. doi:10.1172/JCI63193. Epub 2012 Dec 10. Chang T, Krisman K, Theobald EH, et al. Sustained MEK inhibition abrogates myeloproliferative disease in Nf1 mutant mice. J Clin Invest. 2013;123:335–9. doi:10.1172/JCI63193. Epub 2012 Dec 10.
106.
Zurück zum Zitat Borthakur G, Popplewell L, Boyiadzis M et al. Phase I/II Trial of the MEK1/2 Inhibitor Trametinib (GSK1120212) in Relapsed/Refractory Myeloid Malignancies: evidence of activity in patients with RAS mutation-positive disease. Proc Am Soc Hem. 2012;120:abstr 677. Borthakur G, Popplewell L, Boyiadzis M et al. Phase I/II Trial of the MEK1/2 Inhibitor Trametinib (GSK1120212) in Relapsed/Refractory Myeloid Malignancies: evidence of activity in patients with RAS mutation-positive disease. Proc Am Soc Hem. 2012;120:abstr 677.
107.
Zurück zum Zitat de Waal Malefyt R, Abrams J, Bennett B, et al. Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med. 1991;174:1209–20.PubMedCrossRef de Waal Malefyt R, Abrams J, Bennett B, et al. Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med. 1991;174:1209–20.PubMedCrossRef
108.
Zurück zum Zitat Pöchlauer S, Jäger E, Jäger U, et al. Recombinant human interleukin-10 in patients with chronic myelomonocytic leukemia. Ann Hematol. 2014. Epub ahead of print. Pöchlauer S, Jäger E, Jäger U, et al. Recombinant human interleukin-10 in patients with chronic myelomonocytic leukemia. Ann Hematol. 2014. Epub ahead of print.
109.
Zurück zum Zitat Zuckerman SH, Ackerman SK, Douglas SD. Long-term human peripheral blood monocyte cultures: establishment, metabolism and morphology of primary human monocyte-macrophage cell cultures. Immunology. 1979;38:401–11.PubMedCentralPubMed Zuckerman SH, Ackerman SK, Douglas SD. Long-term human peripheral blood monocyte cultures: establishment, metabolism and morphology of primary human monocyte-macrophage cell cultures. Immunology. 1979;38:401–11.PubMedCentralPubMed
110.
Zurück zum Zitat Fenaux P, Jouet JP, Zandecki M, et al. Chronic and subacute myelomonocytic leukaemia in the adult: a report of 60 cases with special reference to prognostic factors. Br J Haematol. 1987;65:101–6.PubMedCrossRef Fenaux P, Jouet JP, Zandecki M, et al. Chronic and subacute myelomonocytic leukaemia in the adult: a report of 60 cases with special reference to prognostic factors. Br J Haematol. 1987;65:101–6.PubMedCrossRef
111.
Zurück zum Zitat Yokozeki H, Takayama K, Ohki O, et al. Comparative analysis of CD80 and CD86 on human Langerhans cells: expression and function. Arch Dermatol Res. 1998;290:547–52.PubMedCrossRef Yokozeki H, Takayama K, Ohki O, et al. Comparative analysis of CD80 and CD86 on human Langerhans cells: expression and function. Arch Dermatol Res. 1998;290:547–52.PubMedCrossRef
Metadaten
Titel
Translational hematology
verfasst von
Prim. Univ. Prof. Dr. Klaus Geissler
Publikationsdatum
01.11.2014
Verlag
Springer Vienna
Erschienen in
Wiener Medizinische Wochenschrift / Ausgabe 21-22/2014
Print ISSN: 0043-5341
Elektronische ISSN: 1563-258X
DOI
https://doi.org/10.1007/s10354-014-0306-9

Weitere Artikel der Ausgabe 21-22/2014

Wiener Medizinische Wochenschrift 21-22/2014 Zur Ausgabe