Skip to main content
Erschienen in: Spektrum der Augenheilkunde 4/2013

01.08.2013 | original article

Influence of blue-light-filtering intraocular lenses on daytime levels of melatonin (BluMel-Study)

verfasst von: Assoc. Prof. Katharina E. Kubista, MD, Simon Brunner, MD, Carl G. Glittenberg, MD, Anelia Hochwarter, MD, Univ. Prof. Susanne Binder, MD

Erschienen in: Spektrum der Augenheilkunde | Ausgabe 4/2013

Einloggen, um Zugang zu erhalten

Summary

Background

Blue-light-filtering intraocular lenses have been developed to avoid the “blue-light-hazard,” which is thought to induce age-related macular degeneration. However, the intrinsically photosensitive retinal ganglion cells have their peak sensitivity at 480 nm, and their sent information influences melatonin production in the pineal gland.

Material and Methods

To analyze the effect of these blue-light-filtering intraocular lenses we compared the change in melatonin daytime levels after implantation of blue-light-filtering or white intraocular lenses. Eight subjects with cataract were randomized to receive either blue-light-filtering or white intraocular lenses. Melatonin analysis, visual acuity, complete slit lamp analysis, and questionnaire about sleeping habits and quality were performed before and 1 month after cataract surgery.

Results

Five subjects received a blue-light-filtering and three a white intraocular lens. The average amounts of wakes during the night increased postoperatively in three out of the five subjects who received the blue-light-filtering lens. Subjects with the white lens only had < 1.0 pg/ml increase, while subjects with blue-light-filtering intraocular lenses had > 1.0 pg/ml increase of melatonin after surgery.

Conclusion

We found that subjects who received blue-light-filtering intraocular lenses had an increase in uneasy sleep and more wakes during the night. Since melatonin secretion is not blocked by the blue-light-filtering lenses, which leads to elevated levels of melatonin during day time, and can increase retinal damage in light, the effectiveness of the blue-light-filtering intraocular lenses has to be questioned and needs to be further investigated.
Literatur
1.
Zurück zum Zitat Klein R, Peto T, Bird A, Vannewkirk MR. The epidemiology of age-related macular degeneration. Am J Ophthalmol. 2004;137:486–95.PubMedCrossRef Klein R, Peto T, Bird A, Vannewkirk MR. The epidemiology of age-related macular degeneration. Am J Ophthalmol. 2004;137:486–95.PubMedCrossRef
2.
Zurück zum Zitat Winkler BS, Boulton ME, Gottsch JD, Sternberg P. Oxidative damage and age-related macular degeneration. Mol Vis. 1999;5:32.PubMed Winkler BS, Boulton ME, Gottsch JD, Sternberg P. Oxidative damage and age-related macular degeneration. Mol Vis. 1999;5:32.PubMed
3.
Zurück zum Zitat Liang FQ, Green L, Wang C, Alssadi R, Godley BF. Melatonin protects human retinal pigment epithelial (RPE) cells against oxidative stress. Exp Eye Res. 2004;78:1069–75.PubMedCrossRef Liang FQ, Green L, Wang C, Alssadi R, Godley BF. Melatonin protects human retinal pigment epithelial (RPE) cells against oxidative stress. Exp Eye Res. 2004;78:1069–75.PubMedCrossRef
4.
Zurück zum Zitat Mainster MA. Violet and blue light blocking intraocular lenses: photoprotection versus photoreception. Br J Ophthalmol. 2006;90:784–92.PubMedCrossRef Mainster MA. Violet and blue light blocking intraocular lenses: photoprotection versus photoreception. Br J Ophthalmol. 2006;90:784–92.PubMedCrossRef
5.
Zurück zum Zitat Cuthbertson FM, Peirson SN, Wulff K, Foster RG, Downes SM. Blue light-filtering intraocular lenses: review of potential benefits and side effects. J Cataract Refract Surg. 2009;35:1281–97.PubMedCrossRef Cuthbertson FM, Peirson SN, Wulff K, Foster RG, Downes SM. Blue light-filtering intraocular lenses: review of potential benefits and side effects. J Cataract Refract Surg. 2009;35:1281–97.PubMedCrossRef
6.
Zurück zum Zitat Charman WN. Age, lens transmittance, and the possible effects of light on melatonin suppression. Ophthalmic Physiol Opt. 2003;23:181–7.PubMedCrossRef Charman WN. Age, lens transmittance, and the possible effects of light on melatonin suppression. Ophthalmic Physiol Opt. 2003;23:181–7.PubMedCrossRef
7.
Zurück zum Zitat Pandi-Perumal SR, Srinivasan V, Maestroni GJ, Cardinali DP, Poeggeler B, Hardeland R. Melatonin. Nature’s most versatile biological signal? FEBS J. 2006; 273:2813–38.PubMedCrossRef Pandi-Perumal SR, Srinivasan V, Maestroni GJ, Cardinali DP, Poeggeler B, Hardeland R. Melatonin. Nature’s most versatile biological signal? FEBS J. 2006; 273:2813–38.PubMedCrossRef
8.
Zurück zum Zitat Lockley SW, Evans EE, Scheer FA, Brainard GC, Czeisler CA, Aeschbach D. Short-wavelength sensitivity for the direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans. Sleep. 2006;29:161–8.PubMed Lockley SW, Evans EE, Scheer FA, Brainard GC, Czeisler CA, Aeschbach D. Short-wavelength sensitivity for the direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans. Sleep. 2006;29:161–8.PubMed
9.
Zurück zum Zitat Wiechmann AF, Campbell LD, Defoe DM. Melatonin receptor RNA expression in Xenopus retina. Brain Res Mol Brain Res. 1999;63:297–303.PubMedCrossRef Wiechmann AF, Campbell LD, Defoe DM. Melatonin receptor RNA expression in Xenopus retina. Brain Res Mol Brain Res. 1999;63:297–303.PubMedCrossRef
10.
Zurück zum Zitat Sasseville A, Paquet N, Sevigny J, Hebert M. Blue blocker glasses impede the capacity of bright light to suppress melatonin production. J Pineal Res. 2006;41:73–8.PubMedCrossRef Sasseville A, Paquet N, Sevigny J, Hebert M. Blue blocker glasses impede the capacity of bright light to suppress melatonin production. J Pineal Res. 2006;41:73–8.PubMedCrossRef
11.
Zurück zum Zitat Schmid-Kubista KE, Glittenberg CG, Cezanne M, Holzmann K, Neumaier-Ammerer B, Binder S. Daytime levels of melatonin in patients with age-related macular degeneration. Acta Ophthalmol. 2009;87:89–93.PubMedCrossRef Schmid-Kubista KE, Glittenberg CG, Cezanne M, Holzmann K, Neumaier-Ammerer B, Binder S. Daytime levels of melatonin in patients with age-related macular degeneration. Acta Ophthalmol. 2009;87:89–93.PubMedCrossRef
12.
Zurück zum Zitat Kripke DF, Elliott JA, Youngstedt SD, Rex KM. Circadian phase response curves to light in older and young women and men. J Circadian Rhythms. 2007;5:4.PubMedCrossRef Kripke DF, Elliott JA, Youngstedt SD, Rex KM. Circadian phase response curves to light in older and young women and men. J Circadian Rhythms. 2007;5:4.PubMedCrossRef
13.
Zurück zum Zitat Landers JA, Tamblyn D, Perriam D. Effect of a blue-light-blocking intraocular lens on the quality of sleep. J Cataract Refract Surg. 2009;35:83–8.PubMedCrossRef Landers JA, Tamblyn D, Perriam D. Effect of a blue-light-blocking intraocular lens on the quality of sleep. J Cataract Refract Surg. 2009;35:83–8.PubMedCrossRef
14.
Zurück zum Zitat Sugawara T, Sieving PA, Iuvone PM, Bush RA. The melatonin antagonist luzindole protects retinal photoreceptors from light damage in the rat. Invest Ophthalmol Vis Sci. 1998;39:2458–65.PubMed Sugawara T, Sieving PA, Iuvone PM, Bush RA. The melatonin antagonist luzindole protects retinal photoreceptors from light damage in the rat. Invest Ophthalmol Vis Sci. 1998;39:2458–65.PubMed
Metadaten
Titel
Influence of blue-light-filtering intraocular lenses on daytime levels of melatonin (BluMel-Study)
verfasst von
Assoc. Prof. Katharina E. Kubista, MD
Simon Brunner, MD
Carl G. Glittenberg, MD
Anelia Hochwarter, MD
Univ. Prof. Susanne Binder, MD
Publikationsdatum
01.08.2013
Verlag
Springer Vienna
Erschienen in
Spektrum der Augenheilkunde / Ausgabe 4/2013
Print ISSN: 0930-4282
Elektronische ISSN: 1613-7523
DOI
https://doi.org/10.1007/s00717-013-0174-5

Weitere Artikel der Ausgabe 4/2013

Spektrum der Augenheilkunde 4/2013 Zur Ausgabe

editorial

Editorial