Skip to main content
Erschienen in: European Surgery 3/2013

01.06.2013 | Main Topic

Articular cartilage tissue regeneration—current research strategies and outlook for the future

verfasst von: A. H. Teuschl, PhD, S. Nürnberger, MSc, Prof. H. Redl, PhD, T. Nau, MD

Erschienen in: European Surgery | Ausgabe 3/2013

Einloggen, um Zugang zu erhalten

Summary

Background

Tissue engineering of articular cartilage has always been a major focus of interest in regenerative medicine. Despite considerable progress, and some of the strategies being at a routine clinical stage, the real breakthrough in cartilage repair with satisfying long-term clinical results, has still not been achieved.

Methods

This review provides an overview of the current basic and clinical research strategies in cartilage regeneration. In addition to the available cell types, several natural and synthetic scaffolds including their respective performance in in vitro cartilage formation and in vivo cartilage regeneration are described. Moreover, bioreactor systems that mimic the mechanical loading of articular cartilage, either to provide an additional stimulus for tissue maturation prior to implantation or to study the effects of mechanical forces on cells for cartilage repair, are demonstrated.

Results

Limitations of the current strategies are highlighted and discussed with a special focus on integration of neocartilage into the adjacent host cartilage tissue.

Conclusion

As this integration still represents an ongoing hurdle, engineering strategies targeting the interfaces have been developed.
Literatur
1.
Zurück zum Zitat Filardo G, Kon E, Roffi A, Di Martino A, Marcacci M. Scaffold-based repair for cartilage healing: a systematic review and technical note. Arthroscopy. 2013 Jan;29(1):174–86.PubMedCrossRef Filardo G, Kon E, Roffi A, Di Martino A, Marcacci M. Scaffold-based repair for cartilage healing: a systematic review and technical note. Arthroscopy. 2013 Jan;29(1):174–86.PubMedCrossRef
3.
Zurück zum Zitat Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994 Oct 6;331(14):889–95.PubMedCrossRef Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994 Oct 6;331(14):889–95.PubMedCrossRef
4.
Zurück zum Zitat Benya PD, Padilla SR, Nimni ME. Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell. 1978 Dec;15(4):1313–21.PubMedCrossRef Benya PD, Padilla SR, Nimni ME. Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell. 1978 Dec;15(4):1313–21.PubMedCrossRef
5.
Zurück zum Zitat Ofek G, Revell CM, Hu JC, Allison DD, Grande-Allen KJ, Athanasiou KA. Matrix development in self-assembly of articular cartilage. PLoS One. 2008 Jan;3(7):e2795.PubMedCrossRef Ofek G, Revell CM, Hu JC, Allison DD, Grande-Allen KJ, Athanasiou KA. Matrix development in self-assembly of articular cartilage. PLoS One. 2008 Jan;3(7):e2795.PubMedCrossRef
6.
Zurück zum Zitat Adkisson HD, Martin JA, Amendola RL, Milliman C, Mauch KA, Katwal AB, et al. The potential of human allogeneic juvenile chondrocytes for restoration of articular cartilage. Am J Sports Med. 2010 Jul;38(7):1324–33.PubMedCrossRef Adkisson HD, Martin JA, Amendola RL, Milliman C, Mauch KA, Katwal AB, et al. The potential of human allogeneic juvenile chondrocytes for restoration of articular cartilage. Am J Sports Med. 2010 Jul;38(7):1324–33.PubMedCrossRef
7.
Zurück zum Zitat Schubert T, Anders S, Neumann E, Schölmerich J, Hofstädter F, Grifka J, et al. Long-term effects of chondrospheres on cartilage lesions in an autologous chondrocyte implantation model as investigated in the SCID mouse model. Int J Mol Med. 2009 Apr;23(4):455–60.PubMed Schubert T, Anders S, Neumann E, Schölmerich J, Hofstädter F, Grifka J, et al. Long-term effects of chondrospheres on cartilage lesions in an autologous chondrocyte implantation model as investigated in the SCID mouse model. Int J Mol Med. 2009 Apr;23(4):455–60.PubMed
8.
Zurück zum Zitat Gudas R, Gudaite A, Pocius A, Gudiene A, Cekanauskas E, Monastyreckiene E, et al. Ten-year follow-up of a prospective, randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint of athletes. Am J Sports Med. 2012 Nov;40(11):2499–508.PubMedCrossRef Gudas R, Gudaite A, Pocius A, Gudiene A, Cekanauskas E, Monastyreckiene E, et al. Ten-year follow-up of a prospective, randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint of athletes. Am J Sports Med. 2012 Nov;40(11):2499–508.PubMedCrossRef
9.
Zurück zum Zitat Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999 Apr 2;284(5411):143–7.PubMedCrossRef Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999 Apr 2;284(5411):143–7.PubMedCrossRef
10.
Zurück zum Zitat Pelttari K, Winter A, Steck E, Goetzke K, Hennig T, Ochs BG, et al. Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum. 2006 Oct;54(10):3254–66.PubMedCrossRef Pelttari K, Winter A, Steck E, Goetzke K, Hennig T, Ochs BG, et al. Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum. 2006 Oct;54(10):3254–66.PubMedCrossRef
11.
Zurück zum Zitat Hildner F, Concaro S, Peterbauer A, Wolbank S, Danzer M, Lindahl A, et al. Human adipose-derived stem cells contribute to chondrogenesis in coculture with human articular chondrocytes. Tissue Eng Part A. 2009 Dec;15(12):3961–9.PubMedCrossRef Hildner F, Concaro S, Peterbauer A, Wolbank S, Danzer M, Lindahl A, et al. Human adipose-derived stem cells contribute to chondrogenesis in coculture with human articular chondrocytes. Tissue Eng Part A. 2009 Dec;15(12):3961–9.PubMedCrossRef
12.
Zurück zum Zitat Sabatino MA, Santoro R, Gueven S, Jaquiery C, Wendt DJ, Martin I, et al. Cartilage graft engineering by co-culturing primary human articular chondrocytes with human bone marrow stromal cells. J Tissue Eng Regen Med. 2012 Dec 6. Sabatino MA, Santoro R, Gueven S, Jaquiery C, Wendt DJ, Martin I, et al. Cartilage graft engineering by co-culturing primary human articular chondrocytes with human bone marrow stromal cells. J Tissue Eng Regen Med. 2012 Dec 6.
13.
Zurück zum Zitat Wu L, Prins H-J, Helder MN, Van Blitterswijk CA, Karperien M. Trophic effects of mesenchymal stem cells in chondrocyte co-cultures are independent of culture conditions and cell sources. Tissue Eng Part A. 2012 Aug;18(15–16):1542–51.PubMedCrossRef Wu L, Prins H-J, Helder MN, Van Blitterswijk CA, Karperien M. Trophic effects of mesenchymal stem cells in chondrocyte co-cultures are independent of culture conditions and cell sources. Tissue Eng Part A. 2012 Aug;18(15–16):1542–51.PubMedCrossRef
14.
Zurück zum Zitat Nuernberger S, Cyran N, Albrecht C, Redl H, Vécsei V, Marlovits S. The influence of scaffold architecture on chondrocyte distribution and behavior in matrix-associated chondrocyte transplantation grafts. BioMaterials. 2011 Feb;32(4):1032–40.PubMedCrossRef Nuernberger S, Cyran N, Albrecht C, Redl H, Vécsei V, Marlovits S. The influence of scaffold architecture on chondrocyte distribution and behavior in matrix-associated chondrocyte transplantation grafts. BioMaterials. 2011 Feb;32(4):1032–40.PubMedCrossRef
15.
Zurück zum Zitat Piez KA Collagen. In: Kroschwitz JI, editor. Encyclopedia of polymer science and engineering. New York: Wiley-VCH; 1985. pp. 699–727. Piez KA Collagen. In: Kroschwitz JI, editor. Encyclopedia of polymer science and engineering. New York: Wiley-VCH; 1985. pp. 699–727.
16.
Zurück zum Zitat Lynn AK, Yannas IV, Bonfield W. Antigenicity and immunogenicity of collagen. J Biomed Mater Res B Appl Biomater. 2004 Nov 15;71(2):343–54.PubMedCrossRef Lynn AK, Yannas IV, Bonfield W. Antigenicity and immunogenicity of collagen. J Biomed Mater Res B Appl Biomater. 2004 Nov 15;71(2):343–54.PubMedCrossRef
17.
Zurück zum Zitat Nehrer S, Breinan HA, Ramappa A, Shortkroff S, Young G, Minas T, et al. Canine chondrocytes seeded in type I and type II collagen implants investigated in vitro. J Biomed Mater Res. 1997 Jan;38(2):95–104.PubMedCrossRef Nehrer S, Breinan HA, Ramappa A, Shortkroff S, Young G, Minas T, et al. Canine chondrocytes seeded in type I and type II collagen implants investigated in vitro. J Biomed Mater Res. 1997 Jan;38(2):95–104.PubMedCrossRef
18.
Zurück zum Zitat Frenkel SR, Toolan B, Menche D, Pitman MI, Pachence JM. Chondrocyte transplantation using a collagen bilayer matrix for cartilage repair. J Bone Joint Surg Br. 1997 Sep;79(5):831–6.PubMedCrossRef Frenkel SR, Toolan B, Menche D, Pitman MI, Pachence JM. Chondrocyte transplantation using a collagen bilayer matrix for cartilage repair. J Bone Joint Surg Br. 1997 Sep;79(5):831–6.PubMedCrossRef
19.
Zurück zum Zitat Noguchi T, Oka M, Fujino M, Neo M, Yamamuro T. Repair of osteochondral defects with grafts of cultured chondrocytes. Comparison of allografts and isografts. Clin Orthop Relat Res. 1994 May;(302):251–8. Noguchi T, Oka M, Fujino M, Neo M, Yamamuro T. Repair of osteochondral defects with grafts of cultured chondrocytes. Comparison of allografts and isografts. Clin Orthop Relat Res. 1994 May;(302):251–8.
20.
Zurück zum Zitat Sams AE, Minor RR, Wootton JA, Mohammed H, Nixon AJ. Local and remote matrix responses to chondrocyte-laden collagen scaffold implantation in extensive articular cartilage defects. Osteoarthritis Cartilage. 1995 Mar;3(1):61–70.PubMedCrossRef Sams AE, Minor RR, Wootton JA, Mohammed H, Nixon AJ. Local and remote matrix responses to chondrocyte-laden collagen scaffold implantation in extensive articular cartilage defects. Osteoarthritis Cartilage. 1995 Mar;3(1):61–70.PubMedCrossRef
21.
Zurück zum Zitat Samuel RE, Lee CR, Ghivizzani SC, Evans CH, Yannas IV, Olsen BR, et al. Delivery of plasmid DNA to articular chondrocytes via novel collagen-glycosaminoglycan matrices. Hum Gene Ther. 2002 May 1;13(7):791–802.PubMedCrossRef Samuel RE, Lee CR, Ghivizzani SC, Evans CH, Yannas IV, Olsen BR, et al. Delivery of plasmid DNA to articular chondrocytes via novel collagen-glycosaminoglycan matrices. Hum Gene Ther. 2002 May 1;13(7):791–802.PubMedCrossRef
22.
Zurück zum Zitat Sellers RS, Zhang R, Glasson SS, Kim HD, Peluso D, D’Augusta DA, et al. Repair of articular cartilage defects one year after treatment with recombinant human bone morphogenetic protein-2 (rhBMP-2). J Bone Joint Surg Am. 2000 Feb;82(2):151–60.PubMed Sellers RS, Zhang R, Glasson SS, Kim HD, Peluso D, D’Augusta DA, et al. Repair of articular cartilage defects one year after treatment with recombinant human bone morphogenetic protein-2 (rhBMP-2). J Bone Joint Surg Am. 2000 Feb;82(2):151–60.PubMed
23.
Zurück zum Zitat Zhang W, Chen J, Tao J, Jiang Y, Hu C, Huang L, et al. The use of type 1 collagen scaffold containing stromal cell-derived factor-1 to create a matrix environment conducive to partial-thickness cartilage defects repair. BioMaterials. 2013 Jan;34(3):713–23.PubMedCrossRef Zhang W, Chen J, Tao J, Jiang Y, Hu C, Huang L, et al. The use of type 1 collagen scaffold containing stromal cell-derived factor-1 to create a matrix environment conducive to partial-thickness cartilage defects repair. BioMaterials. 2013 Jan;34(3):713–23.PubMedCrossRef
24.
Zurück zum Zitat Fortier LA, Mohammed HO, Lust G, Nixon AJ. Insulin-like growth factor-I enhances cell-based repair of articular cartilage. J Bone Joint Surg Br. 2002 Mar;84(2):276–88.PubMedCrossRef Fortier LA, Mohammed HO, Lust G, Nixon AJ. Insulin-like growth factor-I enhances cell-based repair of articular cartilage. J Bone Joint Surg Br. 2002 Mar;84(2):276–88.PubMedCrossRef
25.
Zurück zum Zitat Keibl C, Fügl A, Zanoni G, Tangl S, Wolbank S, Redl H, et al. Human adipose derived stem cells reduce callus volume upon BMP-2 administration in bone regeneration. Injury. 2011 Aug;42(8):814–20.PubMedCrossRef Keibl C, Fügl A, Zanoni G, Tangl S, Wolbank S, Redl H, et al. Human adipose derived stem cells reduce callus volume upon BMP-2 administration in bone regeneration. Injury. 2011 Aug;42(8):814–20.PubMedCrossRef
26.
Zurück zum Zitat Fortier LA, Nixon AJ, Lust G. Phenotypic expression of equine articular chondrocytes grown in three-dimensional cultures supplemented with supraphysiologic concentrations of insulin-like growth factor-1. Am J Vet Res. 2002 Feb;63(2):301–5.PubMedCrossRef Fortier LA, Nixon AJ, Lust G. Phenotypic expression of equine articular chondrocytes grown in three-dimensional cultures supplemented with supraphysiologic concentrations of insulin-like growth factor-1. Am J Vet Res. 2002 Feb;63(2):301–5.PubMedCrossRef
27.
Zurück zum Zitat Hendrickson DA, Nixon AJ, Grande DA, Todhunter RJ, Minor RM, Erb H, et al. Chondrocyte-fibrin matrix transplants for resurfacing extensive articular cartilage defects. J Orthop Res. 1994 Jul;12(4):485–97.PubMedCrossRef Hendrickson DA, Nixon AJ, Grande DA, Todhunter RJ, Minor RM, Erb H, et al. Chondrocyte-fibrin matrix transplants for resurfacing extensive articular cartilage defects. J Orthop Res. 1994 Jul;12(4):485–97.PubMedCrossRef
28.
Zurück zum Zitat Nixon AJ, Saxer RA, Brower-Toland BD. Exogenous insulin-like growth factor-I stimulates an autoinductive IGF-I autocrine/paracrine response in chondrocytes. J Orthop Res. 2001 Jan;19(1):26–32.PubMedCrossRef Nixon AJ, Saxer RA, Brower-Toland BD. Exogenous insulin-like growth factor-I stimulates an autoinductive IGF-I autocrine/paracrine response in chondrocytes. J Orthop Res. 2001 Jan;19(1):26–32.PubMedCrossRef
29.
Zurück zum Zitat De Boer MT, Boonstra EA, Lisman T, Porte RJ. Role of fibrin sealants in liver surgery. Dig Surg. 2012 Jan;29(1):54–61.PubMedCrossRef De Boer MT, Boonstra EA, Lisman T, Porte RJ. Role of fibrin sealants in liver surgery. Dig Surg. 2012 Jan;29(1):54–61.PubMedCrossRef
30.
Zurück zum Zitat Ishii K, Kawashima H, Hayama T, Asai T, Kamikawa S, Sakamoto W, et al. Combination of a liquid fibrin sealant with sheet-type hemostatic agents: experimental evaluation in partial nephrectomy animal model. Int J Urol. 2011 Jun;18(6):478–82.PubMedCrossRef Ishii K, Kawashima H, Hayama T, Asai T, Kamikawa S, Sakamoto W, et al. Combination of a liquid fibrin sealant with sheet-type hemostatic agents: experimental evaluation in partial nephrectomy animal model. Int J Urol. 2011 Jun;18(6):478–82.PubMedCrossRef
31.
Zurück zum Zitat Chen TM, Tsai J-C, Burnouf T. A novel technique combining platelet gel, skin graft, and fibrin glue for healing recalcitrant lower extremity ulcers. Dermatol Surg. 2010 Apr;36(4):453–60.PubMedCrossRef Chen TM, Tsai J-C, Burnouf T. A novel technique combining platelet gel, skin graft, and fibrin glue for healing recalcitrant lower extremity ulcers. Dermatol Surg. 2010 Apr;36(4):453–60.PubMedCrossRef
32.
Zurück zum Zitat Bouwmeester SJ, Beckers JM, Kuijer R, Van der Linden AJ, Bulstra SK. Long-term results of rib perichondrial grafts for repair of cartilage defects in the human knee. Int Orthop. 1997 Jan;21(5):313–7.PubMedCrossRef Bouwmeester SJ, Beckers JM, Kuijer R, Van der Linden AJ, Bulstra SK. Long-term results of rib perichondrial grafts for repair of cartilage defects in the human knee. Int Orthop. 1997 Jan;21(5):313–7.PubMedCrossRef
33.
Zurück zum Zitat Kawabe N, Yoshinao M. The repair of full-thickness articular cartilage defects. Immune responses to reparative tissue formed by allogeneic growth plate chondrocyte implants. Clin Orthop Relat Res. 1991 Jul;(268):279–93. Kawabe N, Yoshinao M. The repair of full-thickness articular cartilage defects. Immune responses to reparative tissue formed by allogeneic growth plate chondrocyte implants. Clin Orthop Relat Res. 1991 Jul;(268):279–93.
34.
Zurück zum Zitat Baier Leach J, Bivens KA, Patrick CW, Schmidt CE. Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. Biotechnol Bioeng. 2003 Jun 5;82(5):578–89.PubMedCrossRef Baier Leach J, Bivens KA, Patrick CW, Schmidt CE. Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. Biotechnol Bioeng. 2003 Jun 5;82(5):578–89.PubMedCrossRef
35.
Zurück zum Zitat Zheng Shu X, Liu Y, Palumbo FS, Luo Y, Prestwich GD. In situ crosslinkable hyaluronan hydrogels for tissue engineering. BioMaterials. 2004;25(7–8):1339–48.PubMedCrossRef Zheng Shu X, Liu Y, Palumbo FS, Luo Y, Prestwich GD. In situ crosslinkable hyaluronan hydrogels for tissue engineering. BioMaterials. 2004;25(7–8):1339–48.PubMedCrossRef
36.
Zurück zum Zitat Balazs EA, Denlinger JL. Viscosupplementation: a new concept in the treatment of osteoarthritis. J Rheumatol Suppl. 1993 Aug;39:3–9.PubMed Balazs EA, Denlinger JL. Viscosupplementation: a new concept in the treatment of osteoarthritis. J Rheumatol Suppl. 1993 Aug;39:3–9.PubMed
37.
Zurück zum Zitat Balazs EA. Viscosupplementation for treatment of osteoarthritis: from initial discovery to current status and results. Surg Technol Int. 2004 Jan;12:278–89.PubMed Balazs EA. Viscosupplementation for treatment of osteoarthritis: from initial discovery to current status and results. Surg Technol Int. 2004 Jan;12:278–89.PubMed
38.
Zurück zum Zitat Antonas KN, Fraser JR, Muirden KD. Distribution of biologically labelled radioactive hyaluronic acid injected into joints. Ann Rheum Dis. 1973 Mar;32(2):103–11.PubMedCrossRef Antonas KN, Fraser JR, Muirden KD. Distribution of biologically labelled radioactive hyaluronic acid injected into joints. Ann Rheum Dis. 1973 Mar;32(2):103–11.PubMedCrossRef
39.
Zurück zum Zitat Gao J, Dennis JE, Solchaga LA, Goldberg VM, Caplan AI. Repair of osteochondral defect with tissue-engineered two-phase composite material of injectable calcium phosphate and hyaluronan sponge. Tissue Eng. 2002 Oct;8(5):827–37.PubMedCrossRef Gao J, Dennis JE, Solchaga LA, Goldberg VM, Caplan AI. Repair of osteochondral defect with tissue-engineered two-phase composite material of injectable calcium phosphate and hyaluronan sponge. Tissue Eng. 2002 Oct;8(5):827–37.PubMedCrossRef
40.
Zurück zum Zitat Grigolo B, Roseti L, Fiorini M, Fini M, Giavaresi G, Aldini NN, et al. Transplantation of chondrocytes seeded on a hyaluronan derivative (hyaff-11) into cartilage defects in rabbits. BioMaterials. 2001 Sep;22(17):2417–24.PubMedCrossRef Grigolo B, Roseti L, Fiorini M, Fini M, Giavaresi G, Aldini NN, et al. Transplantation of chondrocytes seeded on a hyaluronan derivative (hyaff-11) into cartilage defects in rabbits. BioMaterials. 2001 Sep;22(17):2417–24.PubMedCrossRef
41.
Zurück zum Zitat Solchaga LA, Gao J, Dennis JE, Awadallah A, Lundberg M, Caplan AI, et al. Treatment of osteochondral defects with autologous bone marrow in a hyaluronan-based delivery vehicle. Tissue Eng. 2002 Apr;8(2):333–47.PubMedCrossRef Solchaga LA, Gao J, Dennis JE, Awadallah A, Lundberg M, Caplan AI, et al. Treatment of osteochondral defects with autologous bone marrow in a hyaluronan-based delivery vehicle. Tissue Eng. 2002 Apr;8(2):333–47.PubMedCrossRef
42.
Zurück zum Zitat Brun P, Zavan B, Vindigni V, Schiavinato A, Pozzuoli A, Iacobellis C, et al. In vitro response of osteoarthritic chondrocytes and fibroblast-like synoviocytes to a 500–730 kDa hyaluronan amide derivative. J Biomed Mater Res B Appl Biomater. 2012 Nov;100(8):2073–81.PubMed Brun P, Zavan B, Vindigni V, Schiavinato A, Pozzuoli A, Iacobellis C, et al. In vitro response of osteoarthritic chondrocytes and fibroblast-like synoviocytes to a 500–730 kDa hyaluronan amide derivative. J Biomed Mater Res B Appl Biomater. 2012 Nov;100(8):2073–81.PubMed
43.
Zurück zum Zitat Ariyoshi W, Takahashi N, Hida D, Knudson CB, Knudson W. Mechanisms involved in enhancement of the expression and function of aggrecanases by hyaluronan oligosaccharides. Arthritis Rheum. 2012 Jan;64(1):187–97.PubMedCrossRef Ariyoshi W, Takahashi N, Hida D, Knudson CB, Knudson W. Mechanisms involved in enhancement of the expression and function of aggrecanases by hyaluronan oligosaccharides. Arthritis Rheum. 2012 Jan;64(1):187–97.PubMedCrossRef
44.
Zurück zum Zitat Akmal M, Singh A, Anand A, Kesani A, Aslam N, Goodship A, et al. The effects of hyaluronic acid on articular chondrocytes. J Bone Joint Surg Br. 2005 Aug;87(8):1143–9.PubMed Akmal M, Singh A, Anand A, Kesani A, Aslam N, Goodship A, et al. The effects of hyaluronic acid on articular chondrocytes. J Bone Joint Surg Br. 2005 Aug;87(8):1143–9.PubMed
45.
Zurück zum Zitat Wang Y, Kim H-JJ, Vunjak-Novakovic G, Kaplan DL. Stem cell-based tissue engineering with silk biomaterials. Biomaterials. 2006 Dec;27(36):6064–82.PubMedCrossRef Wang Y, Kim H-JJ, Vunjak-Novakovic G, Kaplan DL. Stem cell-based tissue engineering with silk biomaterials. Biomaterials. 2006 Dec;27(36):6064–82.PubMedCrossRef
46.
Zurück zum Zitat Macintosh AC, Kearns VR, Crawford A, Hatton PV. Skeletal tissue engineering using silk biomaterials. J Tissue Eng Regen Med.. 2008 March;2(2–3):71–80.PubMedCrossRef Macintosh AC, Kearns VR, Crawford A, Hatton PV. Skeletal tissue engineering using silk biomaterials. J Tissue Eng Regen Med.. 2008 March;2(2–3):71–80.PubMedCrossRef
47.
Zurück zum Zitat Meinel L, Hofmann S, Karageorgiou V, Zichner L, Langer R, Kaplan D, et al. Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds. Biotechnol Bioeng. 2004 Nov 5;88(3):379–91.PubMedCrossRef Meinel L, Hofmann S, Karageorgiou V, Zichner L, Langer R, Kaplan D, et al. Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds. Biotechnol Bioeng. 2004 Nov 5;88(3):379–91.PubMedCrossRef
48.
Zurück zum Zitat Marolt D, Augst A, Freed LE, Vepari C, Fajardo R, Patel N, et al. Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors. BioMaterials. 2006 Dec;27(36):6138–49.PubMedCrossRef Marolt D, Augst A, Freed LE, Vepari C, Fajardo R, Patel N, et al. Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors. BioMaterials. 2006 Dec;27(36):6138–49.PubMedCrossRef
49.
Zurück zum Zitat Wang Y, Blasioli DJ, Kim HSH-J, Kaplan DL. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. BioMaterials. 2006 Sep;27(25):4434–42.PubMedCrossRef Wang Y, Blasioli DJ, Kim HSH-J, Kaplan DL. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. BioMaterials. 2006 Sep;27(25):4434–42.PubMedCrossRef
50.
Zurück zum Zitat Hofmann S, Knecht S, Langer R, Kaplan DL, Vunjak-Novakovic G, Merkle HP, et al. Cartilage-like tissue engineering using silk scaffolds and mesenchymal stem cells. Tissue Eng. 2006 Oct;12(10):2729–38.PubMedCrossRef Hofmann S, Knecht S, Langer R, Kaplan DL, Vunjak-Novakovic G, Merkle HP, et al. Cartilage-like tissue engineering using silk scaffolds and mesenchymal stem cells. Tissue Eng. 2006 Oct;12(10):2729–38.PubMedCrossRef
51.
Zurück zum Zitat Chu CR, Dounchis JS, Yoshioka M, Sah RL, Coutts RD, Amiel D. Osteochondral repair using perichondrial cells. A 1-year study in rabbits. Clin Orthop Relat Res. 1997 Jul;(340):220–9. Chu CR, Dounchis JS, Yoshioka M, Sah RL, Coutts RD, Amiel D. Osteochondral repair using perichondrial cells. A 1-year study in rabbits. Clin Orthop Relat Res. 1997 Jul;(340):220–9.
52.
Zurück zum Zitat Dounchis JS, Bae WC, Chen AC, Sah RL, Coutts RD, Amiel D. Cartilage repair with autogenic perichondrium cell and polylactic acid grafts. Clin Orthop Relat Res. 2000 Aug;(377):248–64. Dounchis JS, Bae WC, Chen AC, Sah RL, Coutts RD, Amiel D. Cartilage repair with autogenic perichondrium cell and polylactic acid grafts. Clin Orthop Relat Res. 2000 Aug;(377):248–64.
53.
Zurück zum Zitat Liu Y, Chen F, Liu W, Cui L, Shang Q, Xia W, et al. Repairing large porcine full-thickness defects of articular cartilage using autologous chondrocyte-engineered cartilage. Tissue Eng. 2002 Aug;8(4):709–21.PubMedCrossRef Liu Y, Chen F, Liu W, Cui L, Shang Q, Xia W, et al. Repairing large porcine full-thickness defects of articular cartilage using autologous chondrocyte-engineered cartilage. Tissue Eng. 2002 Aug;8(4):709–21.PubMedCrossRef
54.
Zurück zum Zitat Evans JD. Sikdar SK. Biodegradable plastics: an idea whose time has come? Chem Technol. 1990;20(1):38–42. Evans JD. Sikdar SK. Biodegradable plastics: an idea whose time has come? Chem Technol. 1990;20(1):38–42.
55.
Zurück zum Zitat Lee N, JH O, Hong C, Suh H, Hong S. Comparison of the synthetic biodegradable polymers, polylactide (PLA), and polylactic-co-glycolic acid (PLGA) as scaffolds for artificial cartilage. Biotechnol Bioprocess Eng. 2009;14:180–6.CrossRef Lee N, JH O, Hong C, Suh H, Hong S. Comparison of the synthetic biodegradable polymers, polylactide (PLA), and polylactic-co-glycolic acid (PLGA) as scaffolds for artificial cartilage. Biotechnol Bioprocess Eng. 2009;14:180–6.CrossRef
56.
Zurück zum Zitat Mehlhorn AT, Zwingmann J, Finkenzeller G, Niemeyer P, Dauner M, Stark B, et al. Chondrogenesis of adipose-derived adult stem cells in a poly-lactide-co-glycolide scaffold. Tissue Eng Part A. 2009 May;15(5):1159–67.PubMedCrossRef Mehlhorn AT, Zwingmann J, Finkenzeller G, Niemeyer P, Dauner M, Stark B, et al. Chondrogenesis of adipose-derived adult stem cells in a poly-lactide-co-glycolide scaffold. Tissue Eng Part A. 2009 May;15(5):1159–67.PubMedCrossRef
57.
Zurück zum Zitat Wu S-C, Chang J-K, Wang C-K, Wang G-J, Ho M-L. Enhancement of chondrogenesis of human adipose derived stem cells in a hyaluronan-enriched microenvironment. BioMaterials. 2010 Feb;31(4):631–40.PubMedCrossRef Wu S-C, Chang J-K, Wang C-K, Wang G-J, Ho M-L. Enhancement of chondrogenesis of human adipose derived stem cells in a hyaluronan-enriched microenvironment. BioMaterials. 2010 Feb;31(4):631–40.PubMedCrossRef
58.
Zurück zum Zitat Temenoff JS, Athanasiou KA, LeBaron RG, Mikos AG. Effect of poly(ethylene glycol) molecular weight on tensile and swelling properties of oligo(poly(ethylene glycol) fumarate) hydrogels for cartilage tissue engineering. J Biomed Mater Res. 2002 Mar 5;59(3):429–37.PubMedCrossRef Temenoff JS, Athanasiou KA, LeBaron RG, Mikos AG. Effect of poly(ethylene glycol) molecular weight on tensile and swelling properties of oligo(poly(ethylene glycol) fumarate) hydrogels for cartilage tissue engineering. J Biomed Mater Res. 2002 Mar 5;59(3):429–37.PubMedCrossRef
59.
Zurück zum Zitat Park H, Guo X, Temenoff JS, Tabata Y, Caplan AI, Kasper FK, et al. Effect of swelling ratio of injectable hydrogel composites on chondrogenic differentiation of encapsulated rabbit marrow mesenchymal stem cells in vitro. Biomacromolecules. 2009 Mar 9;10(3):541–6.PubMedCrossRef Park H, Guo X, Temenoff JS, Tabata Y, Caplan AI, Kasper FK, et al. Effect of swelling ratio of injectable hydrogel composites on chondrogenic differentiation of encapsulated rabbit marrow mesenchymal stem cells in vitro. Biomacromolecules. 2009 Mar 9;10(3):541–6.PubMedCrossRef
60.
Zurück zum Zitat Emans PJ, Jansen EJP, Van Iersel D, Welting TJM, Woodfield TBF, Bulstra SK, et al. Tissue-engineered constructs: the effect of scaffold architecture in osteochondral repair. J Tissue Eng Regen Med. 2012 Mar 21;Epub ahead. Emans PJ, Jansen EJP, Van Iersel D, Welting TJM, Woodfield TBF, Bulstra SK, et al. Tissue-engineered constructs: the effect of scaffold architecture in osteochondral repair. J Tissue Eng Regen Med. 2012 Mar 21;Epub ahead.
61.
Zurück zum Zitat Malda J, Woodfield TBF, Van der Vloodt F, Wilson C, Martens DE, Tramper J, et al. The effect of PEGT/PBT scaffold architecture on the composition of tissue engineered cartilage. BioMaterials. 2005 Jan;26(1):63–72.PubMedCrossRef Malda J, Woodfield TBF, Van der Vloodt F, Wilson C, Martens DE, Tramper J, et al. The effect of PEGT/PBT scaffold architecture on the composition of tissue engineered cartilage. BioMaterials. 2005 Jan;26(1):63–72.PubMedCrossRef
62.
Zurück zum Zitat Healy KE, Rezania A, Stile RA. Designing biomaterials to direct biological responses. Ann N Y Acad Sci. 1999;875:24–35.PubMedCrossRef Healy KE, Rezania A, Stile RA. Designing biomaterials to direct biological responses. Ann N Y Acad Sci. 1999;875:24–35.PubMedCrossRef
63.
Zurück zum Zitat Kuś WM, Górecki A, Strzelczyk P, Swiader P. Carbon fiber scaffolds in the surgical treatment of cartilage lesions. Ann Transplant. 1999 Jan;4(3–4):101–2. Kuś WM, Górecki A, Strzelczyk P, Swiader P. Carbon fiber scaffolds in the surgical treatment of cartilage lesions. Ann Transplant. 1999 Jan;4(3–4):101–2.
64.
Zurück zum Zitat Benke G, Strzelczyk P, Kowalski M, Swiader P. The use of carbon fibers to restore cartilage defects in the knee. Ortop Traumatol Rehabil. 2001 Apr 30;3(2):227–9.PubMed Benke G, Strzelczyk P, Kowalski M, Swiader P. The use of carbon fibers to restore cartilage defects in the knee. Ortop Traumatol Rehabil. 2001 Apr 30;3(2):227–9.PubMed
65.
Zurück zum Zitat Havlas V, Kos P, Jendelová P, Lesný P, Trč T, Syková E. Comparison of chondrogenic differentiation of adipose tissue-derived mesenchymal stem cells with cultured chondrocytes and bone marrow mesenchymal stem cells. Acta Chir Orthop Traumatol Cech. 2011 Jan;78(2):138–44.PubMed Havlas V, Kos P, Jendelová P, Lesný P, Trč T, Syková E. Comparison of chondrogenic differentiation of adipose tissue-derived mesenchymal stem cells with cultured chondrocytes and bone marrow mesenchymal stem cells. Acta Chir Orthop Traumatol Cech. 2011 Jan;78(2):138–44.PubMed
66.
Zurück zum Zitat Huang AH, Stein A, Tuan RS, Mauck RL. Transient exposure to transforming growth factor beta 3 improves the mechanical properties of mesenchymal stem cell-laden cartilage constructs in a density-dependent manner. Tissue Eng Part A. 2009 Nov;15(11):3461–72.PubMedCrossRef Huang AH, Stein A, Tuan RS, Mauck RL. Transient exposure to transforming growth factor beta 3 improves the mechanical properties of mesenchymal stem cell-laden cartilage constructs in a density-dependent manner. Tissue Eng Part A. 2009 Nov;15(11):3461–72.PubMedCrossRef
67.
Zurück zum Zitat Ruschke K, Hiepen C, Becker J, Knaus P. BMPs are mediators in tissue crosstalk of the regenerating musculoskeletal system. Cell Tissue Res. 2012 Mar;347(3):521–44.PubMedCrossRef Ruschke K, Hiepen C, Becker J, Knaus P. BMPs are mediators in tissue crosstalk of the regenerating musculoskeletal system. Cell Tissue Res. 2012 Mar;347(3):521–44.PubMedCrossRef
68.
Zurück zum Zitat Heath CA, Magari SR. Mini-review: mechanical factors affecting cartilage regeneration in vitro. Biotechnol Bioeng. 1996 May 20;50(4):430–7.PubMedCrossRef Heath CA, Magari SR. Mini-review: mechanical factors affecting cartilage regeneration in vitro. Biotechnol Bioeng. 1996 May 20;50(4):430–7.PubMedCrossRef
69.
Zurück zum Zitat Schulz RM, Bader A. Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur Biophys J. 2007 May;36(4–5):539–68.PubMedCrossRef Schulz RM, Bader A. Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur Biophys J. 2007 May;36(4–5):539–68.PubMedCrossRef
70.
Zurück zum Zitat Moretti M, Wendt D, Dickinson SC, Sims TJ, Hollander AP, Kelly DJ, et al. Effects of in vitro preculture on in vivo development of human engineered cartilage in an ectopic model. Tissue Eng. 2005;11(9–10):1421–8.PubMedCrossRef Moretti M, Wendt D, Dickinson SC, Sims TJ, Hollander AP, Kelly DJ, et al. Effects of in vitro preculture on in vivo development of human engineered cartilage in an ectopic model. Tissue Eng. 2005;11(9–10):1421–8.PubMedCrossRef
71.
Zurück zum Zitat Afoke NY, Byers PD, Hutton WC. Contact pressures in the human hip joint. J Bone Joint Surg Br. 1987 Aug;69(4):536–41.PubMed Afoke NY, Byers PD, Hutton WC. Contact pressures in the human hip joint. J Bone Joint Surg Br. 1987 Aug;69(4):536–41.PubMed
72.
Zurück zum Zitat Sironen RK, Karjalainen HM, Törrönen K, Elo MA, Kaarniranta K, Takigawa M, et al. High pressure effects on cellular expression profile and mRNA stability. A cDNA array analysis. Biorheology. 2002 Jan;39(1–2):111–7.PubMed Sironen RK, Karjalainen HM, Törrönen K, Elo MA, Kaarniranta K, Takigawa M, et al. High pressure effects on cellular expression profile and mRNA stability. A cDNA array analysis. Biorheology. 2002 Jan;39(1–2):111–7.PubMed
73.
Zurück zum Zitat Sironen R, Elo M, Kaarniranta K, Helminen HJ, Lammi MJ. Transcriptional activation in chondrocytes submitted to hydrostatic pressure. Biorheology. 2000 Jan;37(1–2):85–93.PubMed Sironen R, Elo M, Kaarniranta K, Helminen HJ, Lammi MJ. Transcriptional activation in chondrocytes submitted to hydrostatic pressure. Biorheology. 2000 Jan;37(1–2):85–93.PubMed
74.
Zurück zum Zitat Kaarniranta K, Elo M, Sironen R, Lammi MJ, Goldring MB, Eriksson JE, et al. Hsp70 accumulation in chondrocytic cells exposed to high continuous hydrostatic pressure coincides with mRNA stabilization rather than transcriptional activation. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2319–24.PubMedCrossRef Kaarniranta K, Elo M, Sironen R, Lammi MJ, Goldring MB, Eriksson JE, et al. Hsp70 accumulation in chondrocytic cells exposed to high continuous hydrostatic pressure coincides with mRNA stabilization rather than transcriptional activation. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2319–24.PubMedCrossRef
75.
Zurück zum Zitat Smith RL, Rusk SF, Ellison BE, Wessells P, Tsuchiya K, Carter DR, et al. In vitro stimulation of articular chondrocyte mRNA and extracellular matrix synthesis by hydrostatic pressure. J Orthop Res. 1996 Jan;14(1):53–60.PubMedCrossRef Smith RL, Rusk SF, Ellison BE, Wessells P, Tsuchiya K, Carter DR, et al. In vitro stimulation of articular chondrocyte mRNA and extracellular matrix synthesis by hydrostatic pressure. J Orthop Res. 1996 Jan;14(1):53–60.PubMedCrossRef
76.
Zurück zum Zitat Smith RL, Lin J, Trindade MC, Shida J, Kajiyama G, Vu T, et al. Time-dependent effects of intermittent hydrostatic pressure on articular chondrocyte type II collagen and aggrecan mRNA expression. J Rehabil Res Dev. 2000;37(2):153–61.PubMed Smith RL, Lin J, Trindade MC, Shida J, Kajiyama G, Vu T, et al. Time-dependent effects of intermittent hydrostatic pressure on articular chondrocyte type II collagen and aggrecan mRNA expression. J Rehabil Res Dev. 2000;37(2):153–61.PubMed
77.
Zurück zum Zitat Mizuno S, Tateishi T, Ushida T, Glowacki J. Hydrostatic fluid pressure enhances matrix synthesis and accumulation by bovine chondrocytes in three-dimensional culture. J Cell Physiol. 2002 Dec;193(3):319–27.PubMedCrossRef Mizuno S, Tateishi T, Ushida T, Glowacki J. Hydrostatic fluid pressure enhances matrix synthesis and accumulation by bovine chondrocytes in three-dimensional culture. J Cell Physiol. 2002 Dec;193(3):319–27.PubMedCrossRef
78.
Zurück zum Zitat Brand RA. Joint contact stress: a reasonable surrogate for biological processes? Iowa Orthop. J. 2005 Jan;25:82–94. Brand RA. Joint contact stress: a reasonable surrogate for biological processes? Iowa Orthop. J. 2005 Jan;25:82–94.
79.
Zurück zum Zitat Hosseini A, Van de Velde SK, Kozanek M, Gill TJ, Grodzinsky AJ, Rubash HE, et al. In-vivo time-dependent articular cartilage contact behavior of the tibiofemoral joint. Osteoarthritis Cartilage. 2010 Jul;18(7):909–16.PubMedCrossRef Hosseini A, Van de Velde SK, Kozanek M, Gill TJ, Grodzinsky AJ, Rubash HE, et al. In-vivo time-dependent articular cartilage contact behavior of the tibiofemoral joint. Osteoarthritis Cartilage. 2010 Jul;18(7):909–16.PubMedCrossRef
80.
Zurück zum Zitat Connelly JT, Vanderploeg EJ, Levenston ME. The influence of cyclic tension amplitude on chondrocyte matrix synthesis: experimental and finite element analyses. Biorheology. 2004 Jan;41(3–4):377–87.PubMed Connelly JT, Vanderploeg EJ, Levenston ME. The influence of cyclic tension amplitude on chondrocyte matrix synthesis: experimental and finite element analyses. Biorheology. 2004 Jan;41(3–4):377–87.PubMed
81.
Zurück zum Zitat De Witt MT, Handley CJ, Oakes BW, Lowther DA. In vitro response of chondrocytes to mechanical loading. The effect of short term mechanical tension. Connect Tissue Res. 1984 Jan;12(2):97–109.PubMedCrossRef De Witt MT, Handley CJ, Oakes BW, Lowther DA. In vitro response of chondrocytes to mechanical loading. The effect of short term mechanical tension. Connect Tissue Res. 1984 Jan;12(2):97–109.PubMedCrossRef
82.
Zurück zum Zitat Millward-Sadler SJ, Wright MO, Davies LW, Nuki G, Salter DM. Mechanotransduction via integrins and interleukin-4 results in altered aggrecan and matrix metalloproteinase 3 gene expression in normal, but not osteoarthritic, human articular chondrocytes. Arthritis Rheum. 2000 Sep;43(9):2091–9.PubMedCrossRef Millward-Sadler SJ, Wright MO, Davies LW, Nuki G, Salter DM. Mechanotransduction via integrins and interleukin-4 results in altered aggrecan and matrix metalloproteinase 3 gene expression in normal, but not osteoarthritic, human articular chondrocytes. Arthritis Rheum. 2000 Sep;43(9):2091–9.PubMedCrossRef
83.
Zurück zum Zitat Fukuda K, Asada S, Kumano F, Saitoh M, Otani K, Tanaka S. Cyclic tensile stretch on bovine articular chondrocytes inhibits protein kinase C activity. J Lab Clin Med. 1997 Aug;130(2):209–15.PubMedCrossRef Fukuda K, Asada S, Kumano F, Saitoh M, Otani K, Tanaka S. Cyclic tensile stretch on bovine articular chondrocytes inhibits protein kinase C activity. J Lab Clin Med. 1997 Aug;130(2):209–15.PubMedCrossRef
84.
Zurück zum Zitat Wright MO, Nishida K, Bavington C, Godolphin JL, Dunne E, Walmsley S, et al. Hyperpolarisation of cultured human chondrocytes following cyclical pressure-induced strain: evidence of a role for alpha 5 beta 1 integrin as a chondrocyte mechanoreceptor. J Orthop Res. 1997 Oct;15(5):742–7.PubMedCrossRef Wright MO, Nishida K, Bavington C, Godolphin JL, Dunne E, Walmsley S, et al. Hyperpolarisation of cultured human chondrocytes following cyclical pressure-induced strain: evidence of a role for alpha 5 beta 1 integrin as a chondrocyte mechanoreceptor. J Orthop Res. 1997 Oct;15(5):742–7.PubMedCrossRef
85.
Zurück zum Zitat Grad S, Eglin D, Alini M, Stoddart MJ. Physical stimulation of chondrogenic cells in vitro: a review. Clin Orthop Relat Res. 2011 Oct;469(10):2764–72.PubMedCrossRef Grad S, Eglin D, Alini M, Stoddart MJ. Physical stimulation of chondrogenic cells in vitro: a review. Clin Orthop Relat Res. 2011 Oct;469(10):2764–72.PubMedCrossRef
86.
Zurück zum Zitat Fan JCY, Waldman SD. The effect of intermittent static biaxial tensile strains on tissue engineered cartilage. Ann Biomed Eng. 2010 Apr;38(4):1672–82.PubMedCrossRef Fan JCY, Waldman SD. The effect of intermittent static biaxial tensile strains on tissue engineered cartilage. Ann Biomed Eng. 2010 Apr;38(4):1672–82.PubMedCrossRef
87.
Zurück zum Zitat Li KW, Williamson AK, Wang AS, Sah RL. Growth responses of cartilage to static and dynamic compression. Clin Orthop Relat Res. 2001 Oct;(391 Suppl):S34–48. Li KW, Williamson AK, Wang AS, Sah RL. Growth responses of cartilage to static and dynamic compression. Clin Orthop Relat Res. 2001 Oct;(391 Suppl):S34–48.
88.
Zurück zum Zitat Nugent GE, Schmidt TA, Schumacher BL, Voegtline MS, Bae WC, Jadin KD, et al. Static and dynamic compression regulate cartilage metabolism of PRoteoGlycan 4 (PRG4). Biorheology. 2006 Jan;43(3–4):191–200.PubMed Nugent GE, Schmidt TA, Schumacher BL, Voegtline MS, Bae WC, Jadin KD, et al. Static and dynamic compression regulate cartilage metabolism of PRoteoGlycan 4 (PRG4). Biorheology. 2006 Jan;43(3–4):191–200.PubMed
89.
Zurück zum Zitat Park S, Hung CT, Ateshian GA. Mechanical response of bovine articular cartilage under dynamic unconfined compression loading at physiological stress levels. Osteoarthritis Cartilage. 2004 Jan;12(1):65–73.PubMedCrossRef Park S, Hung CT, Ateshian GA. Mechanical response of bovine articular cartilage under dynamic unconfined compression loading at physiological stress levels. Osteoarthritis Cartilage. 2004 Jan;12(1):65–73.PubMedCrossRef
90.
Zurück zum Zitat Pelaez D, Huang C-YC, Cheung HS. Cyclic compression maintains viability and induces chondrogenesis of human mesenchymal stem cells in fibrin gel scaffolds. Stem Cells Dev. 2009;18(1):93–102.PubMedCrossRef Pelaez D, Huang C-YC, Cheung HS. Cyclic compression maintains viability and induces chondrogenesis of human mesenchymal stem cells in fibrin gel scaffolds. Stem Cells Dev. 2009;18(1):93–102.PubMedCrossRef
91.
Zurück zum Zitat Mouw JK, Connelly JT, Wilson CG, Michael KE, Levenston ME. Dynamic compression regulates the expression and synthesis of chondrocyte-specific matrix molecules in bone marrow stromal cells. Stem Cells. 2007 Mar;25(3):655–63.PubMedCrossRef Mouw JK, Connelly JT, Wilson CG, Michael KE, Levenston ME. Dynamic compression regulates the expression and synthesis of chondrocyte-specific matrix molecules in bone marrow stromal cells. Stem Cells. 2007 Mar;25(3):655–63.PubMedCrossRef
92.
Zurück zum Zitat Kopesky PW, Lee H-Y, Vanderploeg EJ, Kisiday JD, Frisbie DD, Plaas AHK, et al. Adult equine bone marrow stromal cells produce a cartilage-like ECM mechanically superior to animal-matched adult chondrocytes. Matrix Biol. 2010 Jul;29(5):427–38.PubMedCrossRef Kopesky PW, Lee H-Y, Vanderploeg EJ, Kisiday JD, Frisbie DD, Plaas AHK, et al. Adult equine bone marrow stromal cells produce a cartilage-like ECM mechanically superior to animal-matched adult chondrocytes. Matrix Biol. 2010 Jul;29(5):427–38.PubMedCrossRef
93.
Zurück zum Zitat Terraciano V, Hwang N, Moroni L, Park H B, Zhang Z, Mizrahi J, et al. Differential response of adult and embryonic mesenchymal progenitor cells to mechanical compression in hydrogels. Stem Cells. 2007 Dec;25(11):2730–8.PubMedCrossRef Terraciano V, Hwang N, Moroni L, Park H B, Zhang Z, Mizrahi J, et al. Differential response of adult and embryonic mesenchymal progenitor cells to mechanical compression in hydrogels. Stem Cells. 2007 Dec;25(11):2730–8.PubMedCrossRef
94.
Zurück zum Zitat Campbell JJ, Lee DA, Bader DL. Dynamic compressive strain influences chondrogenic gene expression in human mesenchymal stem cells. Biorheology. 2006 Jan;43(3–4):455–70.PubMed Campbell JJ, Lee DA, Bader DL. Dynamic compressive strain influences chondrogenic gene expression in human mesenchymal stem cells. Biorheology. 2006 Jan;43(3–4):455–70.PubMed
95.
Zurück zum Zitat Buschmann MD, Gluzband YA, Grodzinsky AJ, Hunziker EB. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci. 1995 May;108(Pt 4):1497–508.PubMed Buschmann MD, Gluzband YA, Grodzinsky AJ, Hunziker EB. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci. 1995 May;108(Pt 4):1497–508.PubMed
96.
Zurück zum Zitat Chowdhury TT, Bader DL, Shelton JC, Lee DA. Temporal regulation of chondrocyte metabolism in agarose constructs subjected to dynamic compression. Arch Biochem Biophys. 2003 Oct 1;417(1):105–11.PubMedCrossRef Chowdhury TT, Bader DL, Shelton JC, Lee DA. Temporal regulation of chondrocyte metabolism in agarose constructs subjected to dynamic compression. Arch Biochem Biophys. 2003 Oct 1;417(1):105–11.PubMedCrossRef
97.
Zurück zum Zitat Mauck RL, Soltz MA, Wang CC, Wong DD, Chao PH, Valhmu WB, et al. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng. 2000 Jul;122(3):252–60.PubMedCrossRef Mauck RL, Soltz MA, Wang CC, Wong DD, Chao PH, Valhmu WB, et al. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng. 2000 Jul;122(3):252–60.PubMedCrossRef
98.
Zurück zum Zitat Mauck RL, Wang CC-B, Oswald ES, Ateshian GA, Hung CT. The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthritis Cartilage. 2003 Dec;11(12):879–90.PubMedCrossRef Mauck RL, Wang CC-B, Oswald ES, Ateshian GA, Hung CT. The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthritis Cartilage. 2003 Dec;11(12):879–90.PubMedCrossRef
99.
Zurück zum Zitat Freed LE, Marquis JC, Langer R, Vunjak-Novakovic G, Emmanual J. Composition of cell-polymer cartilage implants. Biotechnol Bioeng. 1994 Mar 25;43(7):605–14.PubMedCrossRef Freed LE, Marquis JC, Langer R, Vunjak-Novakovic G, Emmanual J. Composition of cell-polymer cartilage implants. Biotechnol Bioeng. 1994 Mar 25;43(7):605–14.PubMedCrossRef
100.
Zurück zum Zitat Brown AN, Kim BS, Alsberg E, Mooney DJ. Combining chondrocytes and smooth muscle cells to engineer hybrid soft tissue constructs. Tissue Eng. 2000 Aug;6(4):297–305.PubMedCrossRef Brown AN, Kim BS, Alsberg E, Mooney DJ. Combining chondrocytes and smooth muscle cells to engineer hybrid soft tissue constructs. Tissue Eng. 2000 Aug;6(4):297–305.PubMedCrossRef
101.
Zurück zum Zitat Stading M, Langer R. Mechanical shear properties of cell-polymer cartilage constructs. Tissue Eng. 1999 Jun;5(3):241–50.PubMedCrossRef Stading M, Langer R. Mechanical shear properties of cell-polymer cartilage constructs. Tissue Eng. 1999 Jun;5(3):241–50.PubMedCrossRef
102.
Zurück zum Zitat Frondoza C, Sohrabi A, Hungerford D. Human chondrocytes proliferate and produce matrix components in microcarrier suspension culture. BioMaterials. 1996 May;17(9):879–88.PubMedCrossRef Frondoza C, Sohrabi A, Hungerford D. Human chondrocytes proliferate and produce matrix components in microcarrier suspension culture. BioMaterials. 1996 May;17(9):879–88.PubMedCrossRef
103.
Zurück zum Zitat Freed LE, Marquis JC, Langer R, Vunjak-Novakovic G. Kinetics of chondrocyte growth in cell-polymer implants. Biotechnol Bioeng. 1994 Mar 25;43(7):597–604.PubMedCrossRef Freed LE, Marquis JC, Langer R, Vunjak-Novakovic G. Kinetics of chondrocyte growth in cell-polymer implants. Biotechnol Bioeng. 1994 Mar 25;43(7):597–604.PubMedCrossRef
104.
Zurück zum Zitat Vunjak-Novakovic G, Martin I, Obradovic B, Treppo S, Grodzinsky AJ, Langer R, et al. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J Orthop Res. 1999 Jan;17(1):130–8.PubMedCrossRef Vunjak-Novakovic G, Martin I, Obradovic B, Treppo S, Grodzinsky AJ, Langer R, et al. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J Orthop Res. 1999 Jan;17(1):130–8.PubMedCrossRef
105.
Zurück zum Zitat Obradovic B, Martin I, Padera RF, Treppo S, Freed LE, Vunjak-Novakovic G. Integration of engineered cartilage. J Orthop Res. 2001 Nov;19(6):1089–97.PubMedCrossRef Obradovic B, Martin I, Padera RF, Treppo S, Freed LE, Vunjak-Novakovic G. Integration of engineered cartilage. J Orthop Res. 2001 Nov;19(6):1089–97.PubMedCrossRef
106.
Zurück zum Zitat Frank EH, Jin M, Loening AM, Levenston ME, Grodzinsky AJ. A versatile shear and compression apparatus for mechanical stimulation of tissue culture explants. J Biomech. 2000 Nov;33(11):1523–7.PubMedCrossRef Frank EH, Jin M, Loening AM, Levenston ME, Grodzinsky AJ. A versatile shear and compression apparatus for mechanical stimulation of tissue culture explants. J Biomech. 2000 Nov;33(11):1523–7.PubMedCrossRef
107.
Zurück zum Zitat Jin M, Frank EH, Quinn TM, Hunziker EB, Grodzinsky AJ. Tissue shear deformation stimulates proteoglycan and protein biosynthesis in bovine cartilage explants. Arch Biochem Biophys. 2001 Nov 1;395(1):41–8.PubMedCrossRef Jin M, Frank EH, Quinn TM, Hunziker EB, Grodzinsky AJ. Tissue shear deformation stimulates proteoglycan and protein biosynthesis in bovine cartilage explants. Arch Biochem Biophys. 2001 Nov 1;395(1):41–8.PubMedCrossRef
108.
Zurück zum Zitat Waldman SD, Spiteri CG, Grynpas MD, Pilliar RM, Kandel RA. Long-term intermittent shear deformation improves the quality of cartilaginous tissue formed in vitro. J Orthop Res. 2003 Jul;21(4):590–6.PubMedCrossRef Waldman SD, Spiteri CG, Grynpas MD, Pilliar RM, Kandel RA. Long-term intermittent shear deformation improves the quality of cartilaginous tissue formed in vitro. J Orthop Res. 2003 Jul;21(4):590–6.PubMedCrossRef
109.
Zurück zum Zitat Galban CJ, Locke BR. Effects of spatial variation of cells and nutrient and product concentrations coupled with product inhibition on cell growth in a polymer scaffold. Biotechnol Bioeng. 1999 Sep 20;64(6):633–43.PubMedCrossRef Galban CJ, Locke BR. Effects of spatial variation of cells and nutrient and product concentrations coupled with product inhibition on cell growth in a polymer scaffold. Biotechnol Bioeng. 1999 Sep 20;64(6):633–43.PubMedCrossRef
110.
Zurück zum Zitat Grimshaw MJ, Mason RM. Bovine articular chondrocyte function in vitro depends upon oxygen tension. Osteoarthritis Cartilage. 2000 Sep;8(5):386–92.PubMedCrossRef Grimshaw MJ, Mason RM. Bovine articular chondrocyte function in vitro depends upon oxygen tension. Osteoarthritis Cartilage. 2000 Sep;8(5):386–92.PubMedCrossRef
111.
Zurück zum Zitat Sengers BG, Heywood HK, Lee DA, Oomens CWJ, Bader DL. Nutrient utilization by bovine articular chondrocytes: a combined experimental and theoretical approach. J Biomech Eng. 2005 Oct;127(5):758–66.PubMedCrossRef Sengers BG, Heywood HK, Lee DA, Oomens CWJ, Bader DL. Nutrient utilization by bovine articular chondrocytes: a combined experimental and theoretical approach. J Biomech Eng. 2005 Oct;127(5):758–66.PubMedCrossRef
112.
Zurück zum Zitat Schulz RM, Wüstneck N, Van Donkelaar CC, Shelton JC, Bader A. Development and validation of a novel bioreactor system for load- and perfusion-controlled tissue engineering of chondrocyte-constructs. Biotechnol Bioeng. 2008 Nov 1;101(4):714–28.PubMedCrossRef Schulz RM, Wüstneck N, Van Donkelaar CC, Shelton JC, Bader A. Development and validation of a novel bioreactor system for load- and perfusion-controlled tissue engineering of chondrocyte-constructs. Biotechnol Bioeng. 2008 Nov 1;101(4):714–28.PubMedCrossRef
113.
Zurück zum Zitat Santoro R, Olivares AL, Brans G, Wirz D, Longinotti C, Lacroix D, et al. Bioreactor based engineering of large-scale human cartilage grafts for joint resurfacing. BioMaterials. 2010 Dec;31(34):8946–52.PubMedCrossRef Santoro R, Olivares AL, Brans G, Wirz D, Longinotti C, Lacroix D, et al. Bioreactor based engineering of large-scale human cartilage grafts for joint resurfacing. BioMaterials. 2010 Dec;31(34):8946–52.PubMedCrossRef
114.
Zurück zum Zitat Wendt D, Stroebel S, Jakob M, John GT, Martin I. Uniform tissues engineered by seeding and culturing cells in 3D scaffolds under perfusion at defined oxygen tensions. Biorheology. 2006 Jan;43(3–4):481–8.PubMed Wendt D, Stroebel S, Jakob M, John GT, Martin I. Uniform tissues engineered by seeding and culturing cells in 3D scaffolds under perfusion at defined oxygen tensions. Biorheology. 2006 Jan;43(3–4):481–8.PubMed
115.
Zurück zum Zitat Waldman SD, Couto DC, Grynpas MD, Pilliar RM, Kandel RA. Multi-axial mechanical stimulation of tissue engineered cartilage: review. Eur Cell Mater. 2007 Jan;13(613):73–4.; discussion Waldman SD, Couto DC, Grynpas MD, Pilliar RM, Kandel RA. Multi-axial mechanical stimulation of tissue engineered cartilage: review. Eur Cell Mater. 2007 Jan;13(613):73–4.; discussion
116.
Zurück zum Zitat Wimmer MA, Grad S, Kaup T, Hänni M, Schneider E, Gogolewski S, et al. Tribology approach to the engineering and study of articular cartilage. Tissue Eng. 2004;10(9–10):1436–45.PubMed Wimmer MA, Grad S, Kaup T, Hänni M, Schneider E, Gogolewski S, et al. Tribology approach to the engineering and study of articular cartilage. Tissue Eng. 2004;10(9–10):1436–45.PubMed
117.
Zurück zum Zitat Wimmer M, Alini M, Grad S. The effect of sliding velocity on chondrocytes activity in 3D scaffolds. J Biomech. 2009 Mar 11;42(4):424–9.PubMedCrossRef Wimmer M, Alini M, Grad S. The effect of sliding velocity on chondrocytes activity in 3D scaffolds. J Biomech. 2009 Mar 11;42(4):424–9.PubMedCrossRef
118.
Zurück zum Zitat Nukavarapu SP, Dorcemus DL. Osteochondral tissue engineering: Current strategies and challenges. Biotechnol Adv. 2012 Nov 19;Epub ahead of print. Nukavarapu SP, Dorcemus DL. Osteochondral tissue engineering: Current strategies and challenges. Biotechnol Adv. 2012 Nov 19;Epub ahead of print.
119.
Zurück zum Zitat Deng T, Lv J, Pang J, Liu B, Ke J. Construction of tissue-engineered osteochondral composites and repair of large joint defects in rabbit. J Tissue Eng Regen Med. 2012 Jul 9;ahead of print. Deng T, Lv J, Pang J, Liu B, Ke J. Construction of tissue-engineered osteochondral composites and repair of large joint defects in rabbit. J Tissue Eng Regen Med. 2012 Jul 9;ahead of print.
120.
Zurück zum Zitat Van de Breevaart Bravenboer J, In der Maur CD, Bos PK, Feenstra L, Verhaar JAN, Weinans H, et al. Improved cartilage integration and interfacial strength after enzymatic treatment in a cartilage transplantation model. Arthritis Res Ther. 2004 Jan;6(5):R469–76.PubMedCrossRef Van de Breevaart Bravenboer J, In der Maur CD, Bos PK, Feenstra L, Verhaar JAN, Weinans H, et al. Improved cartilage integration and interfacial strength after enzymatic treatment in a cartilage transplantation model. Arthritis Res Ther. 2004 Jan;6(5):R469–76.PubMedCrossRef
121.
Zurück zum Zitat Khan IM, Gilbert SJ, Singhrao SK, Duance VC, Archer CW. Cartilage integration: evaluation of the reasons for failure of integration during cartilage repair. A review. Eur Cell Mater. 2008 Jan;16:26–39.PubMed Khan IM, Gilbert SJ, Singhrao SK, Duance VC, Archer CW. Cartilage integration: evaluation of the reasons for failure of integration during cartilage repair. A review. Eur Cell Mater. 2008 Jan;16:26–39.PubMed
122.
Zurück zum Zitat Allon AA, Ng KW, Hammoud S, Russell BH, Jones CM, Rivera JJ, et al. Augmenting the articular cartilage-implant interface: Functionalizing with a collagen adhesion protein. J Biomed Mater Res A. 2012 Aug;100(8):2168–75.PubMed Allon AA, Ng KW, Hammoud S, Russell BH, Jones CM, Rivera JJ, et al. Augmenting the articular cartilage-implant interface: Functionalizing with a collagen adhesion protein. J Biomed Mater Res A. 2012 Aug;100(8):2168–75.PubMed
123.
Zurück zum Zitat Gilbert SJ, Singhrao SK, Khan IM, Gonzalez LG, Thomson BM, Burdon D, et al. Enhanced tissue integration during cartilage repair in vitro can be achieved by inhibiting chondrocyte death at the wound edge. Tissue Eng Part A. 2009 Jul;15(7):1739–49.PubMedCrossRef Gilbert SJ, Singhrao SK, Khan IM, Gonzalez LG, Thomson BM, Burdon D, et al. Enhanced tissue integration during cartilage repair in vitro can be achieved by inhibiting chondrocyte death at the wound edge. Tissue Eng Part A. 2009 Jul;15(7):1739–49.PubMedCrossRef
124.
Zurück zum Zitat Tew S, Redman S, Kwan A, Walker E, Khan I, Dowthwaite G, et al. Differences in repair responses between immature and mature cartilage. Clin Orthop Relat Res. 2001 Oct;(391 Suppl):S142–52. Tew S, Redman S, Kwan A, Walker E, Khan I, Dowthwaite G, et al. Differences in repair responses between immature and mature cartilage. Clin Orthop Relat Res. 2001 Oct;(391 Suppl):S142–52.
125.
Zurück zum Zitat Qiu W, Murray MM, Shortkroff S, Lee CR, Martin SD, Spector M. Outgrowth of chondrocytes from human articular cartilage explants and expression of alpha-smooth muscle actin. Wound Repair Regen. 2000;8(5):383–91.PubMedCrossRef Qiu W, Murray MM, Shortkroff S, Lee CR, Martin SD, Spector M. Outgrowth of chondrocytes from human articular cartilage explants and expression of alpha-smooth muscle actin. Wound Repair Regen. 2000;8(5):383–91.PubMedCrossRef
126.
Zurück zum Zitat Bos PK, DeGroot J, Budde M, Verhaar JAN, Van Osch GJVM. Specific enzymatic treatment of bovine and human articular cartilage: implications for integrative cartilage repair. Arthritis Rheum. 2002 Apr;46(4):976–85.PubMedCrossRef Bos PK, DeGroot J, Budde M, Verhaar JAN, Van Osch GJVM. Specific enzymatic treatment of bovine and human articular cartilage: implications for integrative cartilage repair. Arthritis Rheum. 2002 Apr;46(4):976–85.PubMedCrossRef
Metadaten
Titel
Articular cartilage tissue regeneration—current research strategies and outlook for the future
verfasst von
A. H. Teuschl, PhD
S. Nürnberger, MSc
Prof. H. Redl, PhD
T. Nau, MD
Publikationsdatum
01.06.2013
Verlag
Springer Vienna
Erschienen in
European Surgery / Ausgabe 3/2013
Print ISSN: 1682-8631
Elektronische ISSN: 1682-4016
DOI
https://doi.org/10.1007/s10353-013-0217-9

Weitere Artikel der Ausgabe 3/2013

European Surgery 3/2013 Zur Ausgabe