Skip to main content
Erschienen in: European Surgery 3/2013

01.06.2013 | Main Topic

Tissue engineering in thoracic surgery

verfasst von: J. Lindenmann, MD

Erschienen in: European Surgery | Ausgabe 3/2013

Einloggen, um Zugang zu erhalten

Summary

Background

Adequate reconstruction after extensive resection of the trachea, the chest wall, or the diaphragm represents a considerable challenge for the confronted thoracic surgeon. Therefore, different materials and surgical techniques have been tested; the results were not always satisfying. Increasing evidence exists that tissue engineering can be used to replace damaged tissues and organs such as the trachea, the lungs, the chest wall, and the diaphragm.

Methods

This review focuses on the current progress in tissue engineering in general thoracic surgery, illustrating the existing options in particular for tracheal reconstruction. Furthermore, a detailed overview concerning the different options of tissue engineering in the replacement of the lung, the chest cavity, the diaphragm, and the chest wall is given.

Results

Considerable progress could be yielded in the development of a tissue-engineered tracheal graft, where the step from the animal model into the clinical application in the human patient was feasible. Regarding tissue engineering of the chest wall, the diaphragm, and the chest cavity encouraging preliminary results were obtained in the preclinical testing. However, the step into the clinical application could not be reached up till now.

Conclusions

Tissue engineering seems to represent an appropriate future option for reconstruction after extensive resection of the trachea, the chest wall, or the diaphragm. Although tissue engineering is still not reality and therefore far away from daily clinical routine, further studies are definitely warranted enabling continuous improvements as soon as possible, particularly in thoracic surgery.
Literatur
2.
Zurück zum Zitat Kanki-Horimoto S, Horimoto H, Mieno S, et al. Implantation of mesenchymal stem cells overexpressing endothelial nitric oxide synthase improves right ventricular impairments caused by pulmonary hypertension. Circulation. 2006;114(1 Suppl):I181–5.PubMed Kanki-Horimoto S, Horimoto H, Mieno S, et al. Implantation of mesenchymal stem cells overexpressing endothelial nitric oxide synthase improves right ventricular impairments caused by pulmonary hypertension. Circulation. 2006;114(1 Suppl):I181–5.PubMed
3.
Zurück zum Zitat Jungebluth P, Moll G, Baiguera S, et al. Tissue-engineered airway: a regenerative solution. Clin Pharmacol Ther. 2012;91(1):81–93.PubMedCrossRef Jungebluth P, Moll G, Baiguera S, et al. Tissue-engineered airway: a regenerative solution. Clin Pharmacol Ther. 2012;91(1):81–93.PubMedCrossRef
4.
Zurück zum Zitat Jungebluth P, Macchiarini P. Stem cell-based therapy and regenerative approaches to diseases of the respiratory system. Br Med Bull. 2011;99:169–87.PubMedCrossRef Jungebluth P, Macchiarini P. Stem cell-based therapy and regenerative approaches to diseases of the respiratory system. Br Med Bull. 2011;99:169–87.PubMedCrossRef
5.
Zurück zum Zitat Molnar TF, Pongracz JE. Tissue engineering and biotechnology in general thoracic surgery. Eur J Cardiothorac Surg. 2010;37(6):1402–10.PubMedCrossRef Molnar TF, Pongracz JE. Tissue engineering and biotechnology in general thoracic surgery. Eur J Cardiothorac Surg. 2010;37(6):1402–10.PubMedCrossRef
6.
Zurück zum Zitat Bader A, Macchiarini P. Moving towards in situ tracheal regeneration: the bionic tissue-engineered transplantation approach. J Cell Mol Med. 2010;14(7):1877–89.PubMedCrossRef Bader A, Macchiarini P. Moving towards in situ tracheal regeneration: the bionic tissue-engineered transplantation approach. J Cell Mol Med. 2010;14(7):1877–89.PubMedCrossRef
7.
8.
Zurück zum Zitat Belsey R. Resection and reconstruction of the intrathoracic trachea. Br J Surg. 1950;38(150):200–5.PubMedCrossRef Belsey R. Resection and reconstruction of the intrathoracic trachea. Br J Surg. 1950;38(150):200–5.PubMedCrossRef
9.
Zurück zum Zitat Yamashita M, Kanemaru S, Hirano S, et al. Tracheal regeneration after partial resection: a tissue engineering approach. Laryngoscope. 2007;117(3):497–502.PubMedCrossRef Yamashita M, Kanemaru S, Hirano S, et al. Tracheal regeneration after partial resection: a tissue engineering approach. Laryngoscope. 2007;117(3):497–502.PubMedCrossRef
10.
Zurück zum Zitat Walles T, Giere B, Hofmann M, et al. Experimental generation of a tissue-engineered functional and vascularized trachea. J Thorac Cardiovasc Surg. 2004;128(6):900–6.PubMed Walles T, Giere B, Hofmann M, et al. Experimental generation of a tissue-engineered functional and vascularized trachea. J Thorac Cardiovasc Surg. 2004;128(6):900–6.PubMed
11.
Zurück zum Zitat Soleas JP, Paz A, Marcus P, et al. Engineering airway epithelium. J Biomed Biotechnol. 2012;2012:982971.PubMedCrossRef Soleas JP, Paz A, Marcus P, et al. Engineering airway epithelium. J Biomed Biotechnol. 2012;2012:982971.PubMedCrossRef
12.
Zurück zum Zitat Elliott MJ, Haw MP, Jacobs JP, et al. Tracheal reconstruction in children using cadaveric homograft trachea. Eur J Cardiothorac Surg. 1996;10(9):707–12.PubMedCrossRef Elliott MJ, Haw MP, Jacobs JP, et al. Tracheal reconstruction in children using cadaveric homograft trachea. Eur J Cardiothorac Surg. 1996;10(9):707–12.PubMedCrossRef
13.
Zurück zum Zitat Macchiarini P, Walles T, Biancosino, C et al. First human transplantation of a bioengineered airway tissue. J Thorac Cardiovasc Surg. 2004;128(4):638–41.PubMedCrossRef Macchiarini P, Walles T, Biancosino, C et al. First human transplantation of a bioengineered airway tissue. J Thorac Cardiovasc Surg. 2004;128(4):638–41.PubMedCrossRef
14.
Zurück zum Zitat Omori K, Nakamura T, Kanemaru, S et al. Regenerative medicine of the trachea: the first human case. Ann Otol Rhinol Laryngol. 2005;114(6):429–33.PubMed Omori K, Nakamura T, Kanemaru, S et al. Regenerative medicine of the trachea: the first human case. Ann Otol Rhinol Laryngol. 2005;114(6):429–33.PubMed
15.
Zurück zum Zitat Macchiarini P, Jungebluth P, Go T, et al. Clinical transplantation of a tissue-engineered airway. Lancet. 2008;372(9655):2023–30.PubMedCrossRef Macchiarini P, Jungebluth P, Go T, et al. Clinical transplantation of a tissue-engineered airway. Lancet. 2008;372(9655):2023–30.PubMedCrossRef
16.
Zurück zum Zitat Baiguera S, Jungebluth P, Burns A, et al. Tissue-engineered human tracheas for in vivo implantation. Biomaterials. 2010;31(34):8931–8.PubMedCrossRef Baiguera S, Jungebluth P, Burns A, et al. Tissue-engineered human tracheas for in vivo implantation. Biomaterials. 2010;31(34):8931–8.PubMedCrossRef
17.
Zurück zum Zitat Delaere P, Vranckx J, Verleden G, et al. Tracheal allotransplantation after withdrawal of immunosuppressive therapy. N Engl J Med 2010 362:138–45.PubMedCrossRef Delaere P, Vranckx J, Verleden G, et al. Tracheal allotransplantation after withdrawal of immunosuppressive therapy. N Engl J Med 2010 362:138–45.PubMedCrossRef
18.
Zurück zum Zitat Baiguera S, Del Gaudio C, Jaus MO, et al. Long-term changes to in vitro preserved bioengineered human trachea and their implications for decellularized tissues. Biomaterials. 2012;33(14):3662–72.PubMedCrossRef Baiguera S, Del Gaudio C, Jaus MO, et al. Long-term changes to in vitro preserved bioengineered human trachea and their implications for decellularized tissues. Biomaterials. 2012;33(14):3662–72.PubMedCrossRef
19.
Zurück zum Zitat Baiguera S, Ribatti D. Endothelialization approaches for viable engineered tissues. Angiogenesis. 2012 Sep 26. (Epub ahead of print) Baiguera S, Ribatti D. Endothelialization approaches for viable engineered tissues. Angiogenesis. 2012 Sep 26. (Epub ahead of print)
20.
Zurück zum Zitat Tan Q, Steiner R, Hoerstrup SP, et al. Tissue-engineered trachea: History, problems and the future. Eur J Cardiothorac Surg. 2006;30(5):782–6.PubMedCrossRef Tan Q, Steiner R, Hoerstrup SP, et al. Tissue-engineered trachea: History, problems and the future. Eur J Cardiothorac Surg. 2006;30(5):782–6.PubMedCrossRef
21.
Zurück zum Zitat Walles T. Tracheobronchial bio-engineering: biotechnology fulfilling unmet medical needs. Adv Drug Deliv Rev. 2011;63(4–5):367–74.PubMedCrossRef Walles T. Tracheobronchial bio-engineering: biotechnology fulfilling unmet medical needs. Adv Drug Deliv Rev. 2011;63(4–5):367–74.PubMedCrossRef
22.
Zurück zum Zitat Kalathur M, Baiguera S, Macchiarini P. Translating tissue-engineered tracheal replacement from bench to bedside. Cell Mol Life Sci. 2010;67(24):4185–96.PubMedCrossRef Kalathur M, Baiguera S, Macchiarini P. Translating tissue-engineered tracheal replacement from bench to bedside. Cell Mol Life Sci. 2010;67(24):4185–96.PubMedCrossRef
23.
Zurück zum Zitat Nakamura T, Ohmori K, Kanemaru S. Tissue-engineered airway and “in situ tissue engineering”. Gen Thorac Cardiovasc Surg. 2011;59(2):91–7.PubMedCrossRef Nakamura T, Ohmori K, Kanemaru S. Tissue-engineered airway and “in situ tissue engineering”. Gen Thorac Cardiovasc Surg. 2011;59(2):91–7.PubMedCrossRef
24.
Zurück zum Zitat Baiguera S, Jungebluth P, Mazzanti B et al. Mesenchymal stromal cells for tissue-engineered tissue and organ replacements. Transpl Int. 2012;25(4):369–82.PubMedCrossRef Baiguera S, Jungebluth P, Mazzanti B et al. Mesenchymal stromal cells for tissue-engineered tissue and organ replacements. Transpl Int. 2012;25(4):369–82.PubMedCrossRef
25.
Zurück zum Zitat Fishman JM, De Coppi P, Elliott MJ et al. Airway tissue engineering. Expert Opin Biol Ther. 2011;11(12):1623–35.PubMedCrossRef Fishman JM, De Coppi P, Elliott MJ et al. Airway tissue engineering. Expert Opin Biol Ther. 2011;11(12):1623–35.PubMedCrossRef
26.
Zurück zum Zitat Baiguera S, D’Innocenzo B, Macchiarini P. Current status of regenerative replacement of the airway. Expert Rev Respir Med. 2011;5(4):487–94.PubMedCrossRef Baiguera S, D’Innocenzo B, Macchiarini P. Current status of regenerative replacement of the airway. Expert Rev Respir Med. 2011;5(4):487–94.PubMedCrossRef
27.
Zurück zum Zitat Elliott MJ, De Coppi P, Speggiorin S, et al. Stem-cell-based, tissue-engineered tracheal replacement in a child: a 2-year follow-up study. Lancet. 2012;380(9846):994–1000.PubMedCrossRef Elliott MJ, De Coppi P, Speggiorin S, et al. Stem-cell-based, tissue-engineered tracheal replacement in a child: a 2-year follow-up study. Lancet. 2012;380(9846):994–1000.PubMedCrossRef
28.
Zurück zum Zitat Nichols JE, Cortiella J. Engineering of a complex organ: progress toward development of a tissue-engineered lung. Proc Am Thorac Soc. 2008;5(6):723–30.PubMedCrossRef Nichols JE, Cortiella J. Engineering of a complex organ: progress toward development of a tissue-engineered lung. Proc Am Thorac Soc. 2008;5(6):723–30.PubMedCrossRef
29.
Zurück zum Zitat Nichols JE, Niles JA, Cortiella J. Design and development of tissue-engineered lung: progress and challenges. Organogenesis. 2009;5(2):57–61.PubMedCrossRef Nichols JE, Niles JA, Cortiella J. Design and development of tissue-engineered lung: progress and challenges. Organogenesis. 2009;5(2):57–61.PubMedCrossRef
30.
Zurück zum Zitat Nichols JE, Niles JA, Cortiella J. Production and utilization of acellular lung scaffolds in tissue engineering. J Cell Biochem. 2012;113(7):2185–92.PubMedCrossRef Nichols JE, Niles JA, Cortiella J. Production and utilization of acellular lung scaffolds in tissue engineering. J Cell Biochem. 2012;113(7):2185–92.PubMedCrossRef
31.
Zurück zum Zitat Misaki N, Yamamoto Y, Okamoto T, et al. Intra-thoracic fibrous tissue induction by polylactic acid and epsilon-caprolactone copolymer cubes, with or without slow release of basic fibroblast growth factor. Eur J Cardiothorac Surg. 2007;32(5):761–5.PubMedCrossRef Misaki N, Yamamoto Y, Okamoto T, et al. Intra-thoracic fibrous tissue induction by polylactic acid and epsilon-caprolactone copolymer cubes, with or without slow release of basic fibroblast growth factor. Eur J Cardiothorac Surg. 2007;32(5):761–5.PubMedCrossRef
32.
Zurück zum Zitat Molnar TF. Current surgical treatment of thoracic empyema in adults. Eur J Cardiothorac Surg. 2007;32(3):422–30.PubMedCrossRef Molnar TF. Current surgical treatment of thoracic empyema in adults. Eur J Cardiothorac Surg. 2007;32(3):422–30.PubMedCrossRef
33.
Zurück zum Zitat Tsunooka N, Hirayama S, Medin JA, et al. A novel tissue-engineered approach to problems of the postpneumonectomy space. Ann Thorac Surg. 2011;91(3):880–6.PubMedCrossRef Tsunooka N, Hirayama S, Medin JA, et al. A novel tissue-engineered approach to problems of the postpneumonectomy space. Ann Thorac Surg. 2011;91(3):880–6.PubMedCrossRef
34.
Zurück zum Zitat Gasior AC, St Peter SD. A review of patch options in the repair of congenital diaphragm defects. Pediatr Surg Int. 2012;28(4):327–33.PubMedCrossRef Gasior AC, St Peter SD. A review of patch options in the repair of congenital diaphragm defects. Pediatr Surg Int. 2012;28(4):327–33.PubMedCrossRef
35.
Zurück zum Zitat Fauza DO, Marler JJ, Koka R, et al. Fetal tissue engineering: diaphragmatic replacement. J Pediatr Surg. 2001;36(1):146–51.PubMedCrossRef Fauza DO, Marler JJ, Koka R, et al. Fetal tissue engineering: diaphragmatic replacement. J Pediatr Surg. 2001;36(1):146–51.PubMedCrossRef
36.
Zurück zum Zitat Fuchs JR, Kaviani A, Oh JT, et al. Diaphragmatic reconstruction with autologous tendon engineered from mesenchymal amniocytes. J Pediatr Surg. 2004;39(6):834–8.PubMedCrossRef Fuchs JR, Kaviani A, Oh JT, et al. Diaphragmatic reconstruction with autologous tendon engineered from mesenchymal amniocytes. J Pediatr Surg. 2004;39(6):834–8.PubMedCrossRef
37.
Zurück zum Zitat Kunisaki SM, Fuchs JR, Kaviani, A et al. Diaphragmatic repair through fetal tissue engineering: a comparison between mesenchymal amniocyte- and myoblast-based constructs. J Pediatr Surg. 2006;41(1):34–9.PubMedCrossRef Kunisaki SM, Fuchs JR, Kaviani, A et al. Diaphragmatic repair through fetal tissue engineering: a comparison between mesenchymal amniocyte- and myoblast-based constructs. J Pediatr Surg. 2006;41(1):34–9.PubMedCrossRef
38.
Zurück zum Zitat Turner CG, Klein JD, Steigman SA, et al. Preclinical regulatory validation of an engineered diaphragmatic tendon made with amniotic mesenchymal stem cells. J Pediatr Surg. 2011;46(1):57–61.PubMedCrossRef Turner CG, Klein JD, Steigman SA, et al. Preclinical regulatory validation of an engineered diaphragmatic tendon made with amniotic mesenchymal stem cells. J Pediatr Surg. 2011;46(1):57–61.PubMedCrossRef
39.
Zurück zum Zitat Rocco G, Fazioli F, Scognamiglio, F et al. The combination of multiple materials in the creation of an artificial anterior chest cage after extensive demolition for recurrent chondrosarcoma. J Thorac Cardiovasc Surg. 2007;133(4):1112–4.PubMedCrossRef Rocco G, Fazioli F, Scognamiglio, F et al. The combination of multiple materials in the creation of an artificial anterior chest cage after extensive demolition for recurrent chondrosarcoma. J Thorac Cardiovasc Surg. 2007;133(4):1112–4.PubMedCrossRef
40.
Zurück zum Zitat Tang H, Xu Z, Qin X, et al. Chest wall reconstruction in a canine model using polydioxanone mesh, demineralized bone matrix and bone marrow stromal cells. Biomaterials. 2009;30(19):3224–33.PubMedCrossRef Tang H, Xu Z, Qin X, et al. Chest wall reconstruction in a canine model using polydioxanone mesh, demineralized bone matrix and bone marrow stromal cells. Biomaterials. 2009;30(19):3224–33.PubMedCrossRef
41.
Zurück zum Zitat Rocco G, Mori S, Fazioli F, et al. The use of biomaterials for chest wall reconstruction 30 years after radical surgery and radiation. Ann Thorac Surg. 2012;94(4):109–10.CrossRef Rocco G, Mori S, Fazioli F, et al. The use of biomaterials for chest wall reconstruction 30 years after radical surgery and radiation. Ann Thorac Surg. 2012;94(4):109–10.CrossRef
42.
Zurück zum Zitat Rocco G, Serra L, Fazioli F, et al. The use of veritas collagen matrix to reconstruct the posterior chest wall after costovertebrectomy. Ann Thorac Surg. 2011;92(1):e17–8.PubMedCrossRef Rocco G, Serra L, Fazioli F, et al. The use of veritas collagen matrix to reconstruct the posterior chest wall after costovertebrectomy. Ann Thorac Surg. 2011;92(1):e17–8.PubMedCrossRef
43.
Zurück zum Zitat Gilbert TW, Nieponice A, Spievack, AR et al. Repair of the thoracic wall with an extracellular matrix scaffold in a canine model. J Surg Res. 2008;147(1):61–7.PubMedCrossRef Gilbert TW, Nieponice A, Spievack, AR et al. Repair of the thoracic wall with an extracellular matrix scaffold in a canine model. J Surg Res. 2008;147(1):61–7.PubMedCrossRef
44.
Zurück zum Zitat Smith MD, Campbell RM. Use of a biodegradable patch for reconstruction of large thoracic cage defects in growing children. J Pediatr Surg. 2006;41(1):46–9.PubMedCrossRef Smith MD, Campbell RM. Use of a biodegradable patch for reconstruction of large thoracic cage defects in growing children. J Pediatr Surg. 2006;41(1):46–9.PubMedCrossRef
45.
Zurück zum Zitat Klein JD, Turner CG, Ahmed, A et al. Chest wall repair with engineered fetal bone grafts: an efficacy analysis in an autologous leporine model. J Pediatr Surg. 2010;45(6):1354–60.PubMedCrossRef Klein JD, Turner CG, Ahmed, A et al. Chest wall repair with engineered fetal bone grafts: an efficacy analysis in an autologous leporine model. J Pediatr Surg. 2010;45(6):1354–60.PubMedCrossRef
46.
Zurück zum Zitat Steigman SA, Ahmed A, Shanti, RM et al. Sternal repair with bone grafts engineered from amniotic mesenchymal stem cells. J Pediatr Surg. 2009;44(6):1120–6.PubMedCrossRef Steigman SA, Ahmed A, Shanti, RM et al. Sternal repair with bone grafts engineered from amniotic mesenchymal stem cells. J Pediatr Surg. 2009;44(6):1120–6.PubMedCrossRef
Metadaten
Titel
Tissue engineering in thoracic surgery
verfasst von
J. Lindenmann, MD
Publikationsdatum
01.06.2013
Verlag
Springer Vienna
Erschienen in
European Surgery / Ausgabe 3/2013
Print ISSN: 1682-8631
Elektronische ISSN: 1682-4016
DOI
https://doi.org/10.1007/s10353-013-0209-9

Weitere Artikel der Ausgabe 3/2013

European Surgery 3/2013 Zur Ausgabe